

Dual Series Switching Diodes

BAV99W, BAV99RW

The BAV99WT1G is a smaller package, equivalent to the BAV99LT1G.

Features

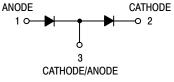
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

Suggested Applications

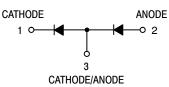
- ESD Protection
- Polarity Reversal Protection
- Data Line Protection
- Inductive Load Protection
- Steering Logic

MAXIMUM RATINGS (Each Diode)

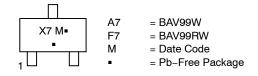
Rating	Symbol	Value	Unit
Reverse Voltage	V _R	100	Vdc
Forward Current	lF	215	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V _{RRM}	100	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non-Repetitive Peak Forward Current t = 1.0 μs t = 1.0 ms t = 1.0 s	I _{FSM}	2.0 1.0 0.5	А


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1


1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

SC-70 CASE 419



BAV99WT1 SC-70, CASE 419, STYLE 9

BAV99RWT1 SC-70, CASE 419, STYLE 10

MARKING DIAGRAM

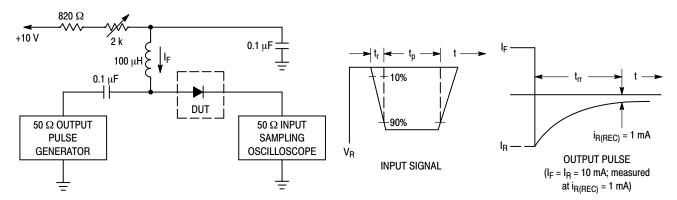
ORDERING INFORMATION

Device	Package	Shipping [†]
BAV99WT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
SBAV99WT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
BAV99RWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
SBAV99RWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
BAV99WT3G	SC-70 (Pb-Free)	10,000 / Tape & Reel
NSVBAV99WT3G	SC-70 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BAV99W, BAV99RW

THERMAL CHARACTERISTICS

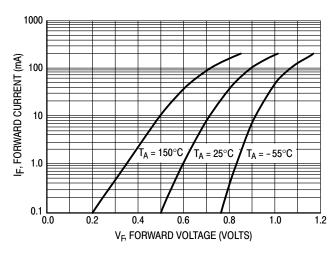

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	625	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-65 to +150	°C

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_{A} = 25^{\circ}\text{C unless otherwise noted}) \ (\text{Each Diode})$

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Reverse Breakdown Voltage (I _(BR) = 100 μA)	V _(BR)	100	-	Vdc
Reverse Voltage Leakage Current ($V_R = 100 \text{ Vdc}$) ($V_R = 25 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$) ($V_R = 70 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$)	I _R	- - -	1.0 30 50	μAdc
Diode Capacitance (V _R = 0, f = 1.0 MHz)	C _D	_	1.5	pF
Forward Voltage $ \begin{aligned} &(I_F = 1.0 \text{ mAdc}) \\ &(I_F = 10 \text{ mAdc}) \\ &(I_F = 50 \text{ mAdc}) \\ &(I_F = 150 \text{ mAdc}) \end{aligned} $	V _F	- - - -	715 855 1000 1250	mVdc
Reverse Recovery Time (I _F = I _R = 10 mAdc, i _{R(REC)} = 1.0 mAdc) (Figure 1) R _L = 100 Ω	t _{rr}	_	6.0	ns
Forward Recovery Voltage (I _F = 10 mA, t _r = 20 ns)	V _{FR}	-	1.75	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.


Notes: (a) A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA.

- (b) Input pulse is adjusted so I_{R(peak)} is equal to 10 mA.
- (c) $t_p \gg t_{rr}$

Figure 1. Recovery Time Equivalent Test Circuit

BAV99W, BAV99RW

CURVES APPLICABLE TO EACH DIODE

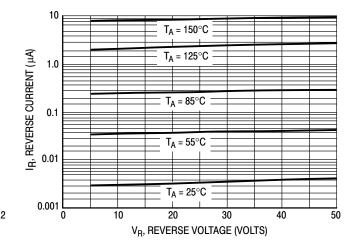


Figure 2. Forward Voltage

Figure 3. Leakage Current

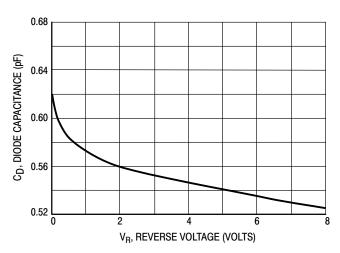
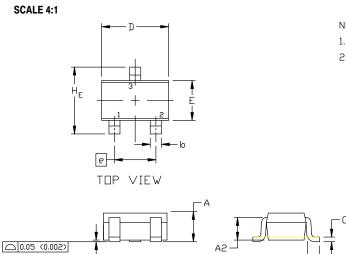
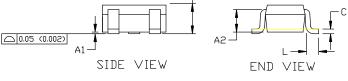


Figure 4. Capacitance


SC-70 (SOT-323) **CASE 419** ISSUE R


DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILL IMETERS			INCHES			
	MILLIMETERS				INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.00	2.20	0.071	0.080	0.087	
E	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC				0.026 BS	C	
L	0.20	0.38	0.56	0.008	0.015	0.022	
HE	2.00	2.10	2.40	0.079	0.083	0.095	

GENERIC MARKING DIAGRAM

= Specific Device Code XX

М = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

0.65 [0.025]
1.90 [0.075]
0.90 [0.035]
0.70 [0.028]

For additional information on our Pb-Free strategy and soldering details, please download the IN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

BAV99RWT1 BAV99RWT1G BAV99WT1 BAV99WT1G SBAV99RWT1G SBAV99WT1G NSVBAV99WT3G