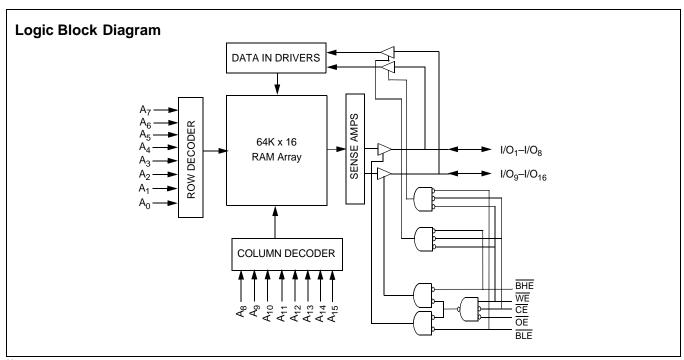


1-Mbit (64K x 16) Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
- Industrial: –40°C to 85°C
- Automotive-A: -40°C to 85°C
- Automotive-E: -40°C to 125°C
- Pin- and function-compatible with CY7C1021BV33
- High speed
 - t_{AA} = 8 ns (Commercial & Industrial)
 - $-t_{AA} = 12 \text{ ns (Automotive)}$
- CMOS for optimum speed/power
- Low active power: 345 mW (max.)
- Automatic power-down when deselected
- · Independent control of upper and lower bits
- Available in Pb-free and non Pb-free 44-pin 400-Mil SOJ 44-pin TSOP II and 48-ball FBGA packages

Functional Description^[1]


The CY7C1021CV33 is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A₀ through A₁₅).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the end of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), the BHE and BLE are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a Write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1021CV33 is available in 44-pin 400-Mil wide SOJ, 44-pin TSOP II and 48-ball FBGA packages.

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Selection Guide

		-8	-10	-12	-15	Unit
Maximum Access Time		8	10	12	15	ns
Maximum Operating Current Comm'l/Ind'l		95	90	85	80	mA
	Automotive-A				80	mA
	Automotive-E			90		mA
	Comm'l/Ind'l	5	5	5	5	mA
Current	Automotive-A				5	mA
	Automotive-E			10		mA

$\label{eq:pinconfigurations} \textbf{Pin Configurations}^{[2]}$

	TSOP II View	48-ball FBGA Top View	
A ₄ 🗖 1	44 🗖 A ₅	1 2 3 4 5 6	
$A_3 \square 2$	43 🗖 🗛		
$A_2 \square 3$	42 \(\square \frac{A_7}{2} \)	$(\overline{BLE})(\overline{OE})(A_0)(A_1)(A_2)(NC)$	
$A_1 \square 4$	41 🗆 <u>OE</u>	$(\overline{BLE})(\overline{OE})(A_0)(A_1)(A_2)(NC)$	Α
<u>A</u> 0 ☐ 5	40 ☐ <u>BHE</u>		
CE ☐ 6	39 🗆 BLE	$(I/O_8)(\overline{BHE})(A_3)(A_4)(\overline{CE})(I/O_0)$	В
I/O ₁	38 🗀 I/O ₁₆		
I/O ₂ □ 8	37 ☐ I/O ₁₅	$\left(I/O_{3} \right) \left(I/O_{10} \right) \left(A_{5} \right) \left(A_{6} \right) \left(I/O_{2} \right) \left(I/O_{1} \right)$	С
I/O ₃ ☐ 9	36 ☐ I/O ₁₄		_
I/O ₄	35 ☐ I/O ₁₃	(V) (V2) (V2) (V2) (V3)	_
V _{CC} ☐11	34 □ V _{SS}	$(V_{SS})(I/O_1)(NC)(A_7)(I/O_3)(V_{CC})$	D
V _{SS} □ 12	33		
I/O ₅	32 □ I/O ₁₂	$(V_{CC})(I/O_{12})(NC)(NC)(I/O_4)(V_{SS})$	Ε
I/O ₆ 14	31 🗖 I/O ₁₁		
I/O ₇ ☐ 15	30 🗖 I/O ₁₀	$(I/O_{14})(I/O_{13})(A_{14})(A_{15})(I/O_{5})(I/O_{6})$	F
<u>l/O₈</u> ☐ 16	29 🗆 I/O ₉	$(1/O_{14})(1/O_{13})(A_{14})(A_{15})(1/O_{5})(1/O_{6})$	
WE □ 17	28 🗆 NC		
A ₁₅ ☐ 18	27 🔲 A ₈	$\left(\text{I/O}_{15} \right) \left(\text{NC} \right) \left(\text{A}_{12} \right) \left(\text{A}_{13} \right) \left(\overline{\text{WE}} \right) \left(\text{I/O}_7 \right) $	G
A ₁₄ □ 19	26 🔲 A ₉		
A ₁₃ \square 20	25 A ₁₀	$(NC)(A_8)(A_9)(A_{10})(A_{11})(NC)$	Н
A ₁₂	24 🔲 A ₁₁	1 10 18 19 110 111 110	11
NC □22	23 🗆 NC		

Note:
2. NC pins are not connected on the die.

Pin Definitions

Pin Name	SOJ, TSOP Pin Number	BGA Pin Number	I/O Type	Description
A ₀ -A ₁₅	1–5, 18–21, 24–27, 42–44	A3, A4, A5, B3, B4, C3, C4, D4, H2, H3, H4, H5, G3, G4, F3, F4	Input	Address Inputs used to select one of the address locations.
I/O ₀ –I/O ₁₅ ^[3]	7–10, 13–16, 29–32, 35–38		Input/Output	Bidirectional Data I/O lines. Used as input or output lines depending on operation.
NC	22, 23, 28	A6, D3, E3, E4, G2, H1, H6	No Connect	No Connects. Not connected to the die.
WE	17	G5	Input/Control	Write Enable Input, active LOW. When selected LOW, a Write is conducted. When deselected HIGH, a Read is conducted.
CE	6	B5	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
BHE, BLE	40, 39	B2, A1	Input/Control	Byte Write Select Inputs, active LOW. $\overline{\rm BHE}$ controls I/O ₁₆ –I/O ₉ , BLE controls I/O ₈ –I/O ₁ .
ŌĒ	41	A2	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
V _{SS}	12,34	D1, E6	Ground	Ground for the device . Should be connected to ground of the system.
V _{CC}	11,33	D6, E1	Power Supply	Power Supply inputs to the device.

Note: 3. I/O_1 – I/O_{16} for SOJ/TSOP and I/O_0 – I/O_{15} for BGA packages.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} Relative to $GND^{[4]}$ -0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State [4]-0.5V to V_{CC} +0.5V DC Input Voltage [4]-0.5V to V_{CC} +0.5V

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-up Current	>200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{cc}
Commercial	0°C to +70°C	3.3V ± 10%
Industrial	-40°C to +85°C	
Automotive-A	-40°C to +85°C	
Automotive -E	-40°C to +125°C	

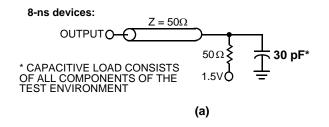
Electrical Characteristics Over the Operating Range

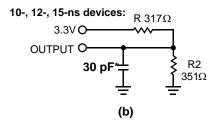
Current into Outputs (LOW)20 mA

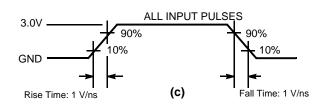
				-	8		10	-1	12	-15		
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $I_{OL} = 8.0 \text{ mA}$			0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V						
V _{IL}	Input LOW Voltage ^[4]		-		0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage	$GND \le V_I \le V_{CC}$	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μΑ
	Current		Auto-A							-1	+1	
			Auto-E					-12	+12			
I _{OZ}	Output Leakage	$GND \leq V_{I} \leq V_{CC},$	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μА
	Current	Output Disabled	Auto-A							-1	+1	
			Auto-E					-12	+12			
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l/Ind'l		95		90		85		80	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	Auto-A								80	mA
		- WAX "FRC	Auto-E						90			
I _{SB1}	Automatic CE	Max. V _{CC} ,	Com'l/Ind'l		15		15		15		15	mA
	Power-Down Current —TTL	$\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or	Auto-A								15	
	Inputs	$V_{IN} \leq V_{IL},$ $f = f_{MAX}$	Auto-E						20			
I _{SB2}	Automatic CE	Max Voc	Com'l/Ind'l		5		5		5		5	mA
	Power-Down Current —CMOS	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Auto-A								5	1
	Inputs	or $V_{IN} \le 0.3V$, f = 0	Auto-E						10			

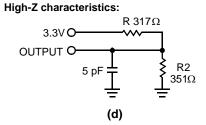
Note:

^{4.} V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 0.5V for pulse durations of less than 20 ns.


Capacitance^[5]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 3.3$ V	8	pF
C _{OUT}	Output Capacitance		8	pF


Thermal Resistance^[5]


Parameter	Description	Test Conditions	SOJ	TSOP II	FBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for	65.06	76.92	95.32	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)	measuring thermal impedance, per EIA/JESD51	34.21	15.86	10.68	°C/W

AC Test Loads and Waveforms^[6]

Notes:

- Tested initially and after any design or process changes that may affect these parameters.
 AC characteristics (except High-Z) for all 8-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).

Switching Characteristics Over the Operating Range^[7]

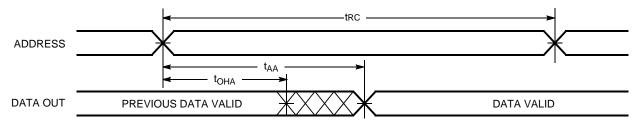
		-	8	-10		-12		-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle				I.	1	ı		I.		4
t _{power} ^[8]	V _{CC} (typical) to the first access	100		100		100		100		μS
t _{RC}	Read Cycle Time	8		10		12		15		ns
t _{AA}	Address to Data Valid		8		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		8		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		5		6		7	ns
t _{LZOE}	OE LOW to Low-Z ^[9]	0		0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[9, 10]		4		5		6		7	ns
t _{LZCE}	CE LOW to Low-Z ^[9]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[9, 10]		4		5		6		7	ns
t _{PU} ^[11]	CE LOW to Power-Up	0		0		0		0		ns
t _{PD} ^[11]	CE HIGH to Power-Down		8		10		12		15	ns
t _{DBE}	Byte Enable to Data Valid		5		5		6		7	ns
t _{LZBE}	Byte Enable to Low-Z	0		0		0		0		ns
t _{HZBE}	Byte Disable to High-Z		4		5		6		7	ns
Write Cycle ^{[1}	12]	•	•		•	ı			ı	.1
t _{WC}	Write Cycle Time	8		10		12		15		ns
t _{SCE}	CE LOW to Write End	7		8		9		10		ns
t _{AW}	Address Set-up to Write End	7		8		9		10		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		10		ns
t _{SD}	Data Set-up to Write End	5		5		6		8		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[9, 10]		4		5		6		7	ns
t _{BW}	Byte Enable to End of Write	6		7		8		9		ns

^{7.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.

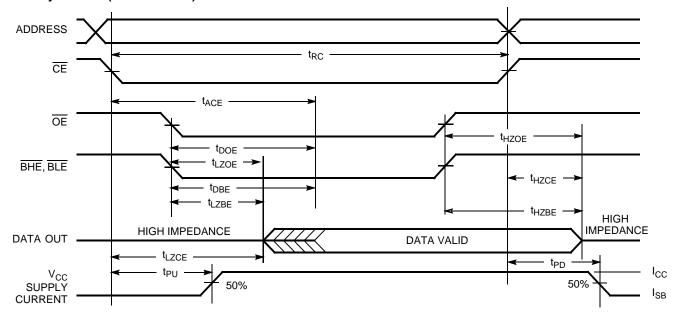
8. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access is performed.

9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

10. t_{HZOE}, t_{HZBE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.


^{11.} This parameter is guaranteed by design and is not tested.

12. The internal Write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE/BLE LOW. CE, WE and BHE/BLE must be LOW to initiate a Write, and the transition of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.



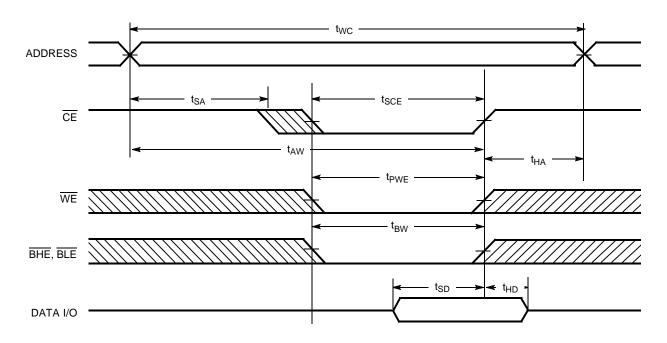
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) [13, 14]

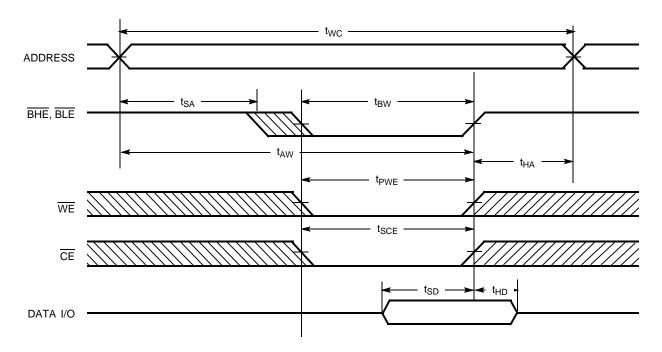
Read Cycle No. 2 (OE Controlled)[14, 15]

Notes:

- 13. Device is continuously selected. OE, CE, BHE and/or BLE = V_{IL}.


 14. WE is HIGH for Read cycle.

 15. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[16, 17]

Write Cycle No. 2 (BLE or BHE Controlled)

Notes:

16. Data I/O is high impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{IH}$.

17. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

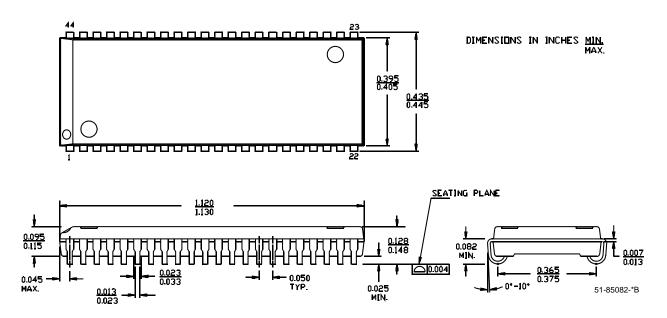
Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, LOW)

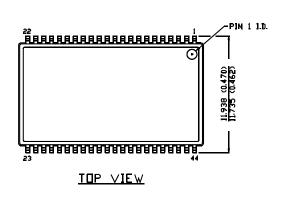
Truth Table

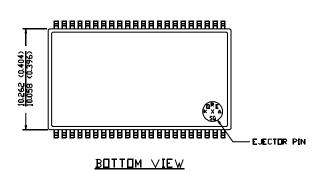
CE	OE	WE	BLE	BHE	I/O ₁ -I/O ₈ ^[3]	I/O ₉ -I/O ₁₆ ^[3]	Mode	Power
Н	Х	Х	Χ	Χ	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High-Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High-Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High-Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High-Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

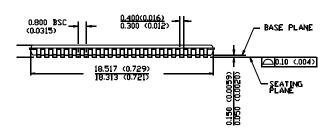
Ordering Information

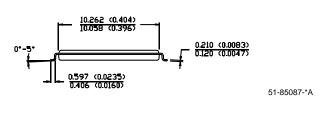

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
8	CY7C1021CV33-8VXC	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	Commercial
	CY7C1021CV33-8ZXC	1	44-pin TSOP Type II (Pb-free)	
	CY7C1021CV33-8BAXC	51-85096	48-ball FBGA (Pb-free)	
10	CY7C1021CV33-10VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021CV33-10VXC	1	44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1021CV33-10ZXC	51-85087	44-pin TSOP Type II (Pb-free)	
	CY7C1021CV33-10ZI		44-pin TSOP Type II	Industrial
	CY7C1021CV33-10ZXI	1	44-pin TSOP Type II (Pb-free)	
	CY7C1021CV33-10BAXI	51-85096	48-ball FBGA (Pb-free)	
12	CY7C1021CV33-12VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021CV33-12VXC		44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1021CV33-12VI	1	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021CV33-12VXI		44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1021CV33-12ZXC	51-85087	44-pin TSOP Type II (Pb-free)	Commercial
	CY7C1021CV33-12ZXI		44-pin TSOP Type II (Pb-free)	Industrial
	CY7C1021CV33-12BAI	51-85096	48-ball FBGA	Industrial
	CY7C1021CV33-12BAXI	1	48-ball FBGA (Pb-free)	
	CY7C1021CV33-12ZSE	51-85087	44-pin TSOP Type II	Automotive-E
	CY7C1021CV33-12ZSXE		44-pin TSOP Type II (Pb-free)	
	CY7C1021CV33-12VE	51-85082	44-pin (400-Mil) Molded SOJ	
	CY7C1021CV33-12VXE		44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1021CV33-12BAE	51-85096	48-ball FBGA	
15	CY7C1021CV33-15VXC	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	Commercial
	CY7C1021CV33-15ZXC	51-85087	44-pin TSOP Type II (Pb-free)	Commercial
	CY7C1021CV33-15ZI		44-pin TSOP Type II	Industrial
	CY7C1021CV33-15ZXI		44-pin TSOP Type II (Pb-free)	
	CY7C1021CV33-15BAXI	51-85096	48-ball FBGA (Pb-free)	
	CY7C1021CV33-15ZSXA	51-85087	44-pin TSOP Type II (Pb-free)	Automotive-A

Please contact local sales representative regarding availability of these parts

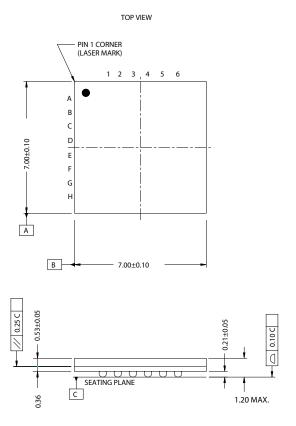

Package Diagrams

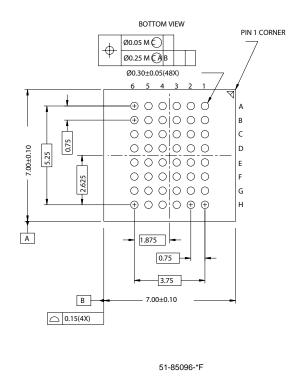

44-pin (400-Mil) Molded SOJ (51-85082)




44-pin Thin Small Outline Package Type II (51-85087)

D[MENS]DN [N MM ([NCH) MAX M]N





Package Diagrams (continued)

48-ball FBGA (7 x 7 x 1.2 mm) (51-85096)

All products and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

	Title: CY7C' Number: 38		-Mbit (64K x	(16) Static RAM
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109472	12/06/01	HGK	New Data Sheet
*A	115044	05/08/02	HGK	Ram7 version C4K x 16 Async Remove "Preliminary"
*B	115808	06/25/02	HGK	I _{SB1} and I _{CC} values changed
*C	120413	10/31/02	DFP	Updated BGA pin E4 to NC
*D	238454	See ECN	RKF	Added Automotive Specs to Data sheet Added Pb-free devices in the Ordering Information
*E	334398	See ECN	SYT	Added Pb-free on page# 9 and 10
*F	493565	See ECN	NXR	Added Automotive-A operating range Corrected typo in the Pin Definition table Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated the ordering information table
*G	563963	See ECN	VKN	Added t _{POWER} spec in the AC Switching Characteristics table Added footnote #8