45 Ω, SPDT Analog Switch in SOT23-8

General Description

The MAX4649 is a dual-supply, single-pole/doublethrow (SPDT) analog switch. On-resistance is 45Ω max and flat (7Ω max) over the specified signal range. The MAX4649 can handle Rail-to-Rail ${ }^{\circledR}$ analog signals, and conducts analog or digital signals equally well in either direction. This switch operates from a single +9 V to +36 V supply, or from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ dual supplies. The primary application areas are in the switching and routing of signals in telecommunications and test equipment.
The MAX4649 features a switch transition time of 130ns max at $+25^{\circ} \mathrm{C}$, and a guaranteed break-before-make switching time of 5 ns . Off-leakage current is only 2 nA max at $+25^{\circ} \mathrm{C}$.
The MAX4649 is available in a tiny 8-pin SOT23 package.

Features

- Low On-Resistance 45Ω max $\pm 15 \mathrm{~V}$ Supplies
- 5Ω max Ron Match Between Channels
- Guaranteed Ron Flatness Over Specified Signal Range (7Ω max)
- VL Logic Supply Not Required
- Rail-to-Rail Signal Handling
- +9V to +36V Single Supply Operation
- $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Dual Supply Operation
- Low Crosstalk: -92dB at 1MHz
- High Off-Isolation: -92dB at 1MHz
- TTL/CMOS-Compatible Control Inputs

Applications

PBX, PABX Systems
Communication Systems
DSL
Test Equipment
Avionics
Audio Systems
Redundant Systems
Relay Replacement
PC Multimedia Boards
PBX, PABX Systems
Communication Systems
DSL
Test Equipment
Avionics
Audio Systems
Redundant Systems
Relay Replacement
PC Multimedia Boards

Rail-to-Rail is a registered trademark of Nippon Motorola, Inc.

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4649EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-$ SOT23	AAIE

Pin Configuration
TOP VIEW

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

45』, SPDT Analog Switch in SOT23-8

```
ABSOLUTE MAXIMUM RATINGS
(Voltages referenced to GND.)
V+
-0.3V to +44.0V
V-.................................................................. V to +0.3V
V+ to V-.....................................................3V to +44.0V
All Other Pins (Note 1).......................(V-- 0.3V) to (V+ + 0.3V)
Continuous Current into any Terminal ........................... }\pm10m
Continuous Current (COM, NO, NC) .............................30mA
Peak Current (COM, NO, NC)
    (pulsed at 1ms, 10% duty cycle)
```

\qquad

``` \(\pm 60 \mathrm{~mA}\)
(pulsed at \(1 \mathrm{~ms}, 10 \%\) duty cycle).................................. 160 mA
```

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
8 -Pin SOT23 (derate $8.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	C).......... 714 mW
Operating Temperature Range	
MAX4649EKA-40	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual $\pm 15 \mathrm{~V}$ Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}			V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{ICOM}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		33	45	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
On-Resistance Matching Between Channels	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	5	Ω
			TMIN to TMAX			6	
On-Resistance Flatness (Note 4)	$\begin{aligned} & \text { RFLAT } \\ & (\mathrm{ON}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{ICOM}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=+5 \mathrm{~V}, 0,-5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	7	Ω
			TMIN to TMAX			10	
NO or NC Off-Leakage Current	INO(OFF) or INC(OFF)	$\begin{aligned} & V_{C O M}=-14 \mathrm{~V},+14 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+14 \mathrm{~V}, \\ & -14 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	0.01	2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM On-Leakage Current	ICOM(ON)	$\mathrm{VCOM}=+14 \mathrm{~V},-14 \mathrm{~V}$; V_{NO} or $\mathrm{V}_{\mathrm{NC}}=+14 \mathrm{~V}$, -14 V or floating	$+25^{\circ} \mathrm{C}$	-4		4	nA
			TMIN to $\mathrm{T}_{\text {MAX }}$	-20		20	
DIGITAL I/O							
Input Logic High Voltage	V_{IH}			2.4			V
Input Logic Low Voltage	VIL					0.8	V
Input Leakage	IIN	V IN $=0$ or +5 V		-1		1	$\mu \mathrm{A}$

45ת, SPDT Analog Switch in SOT23-8

ELECTRICAL CHARACTERISTICS—Dual $\pm 15 \mathrm{~V}$ Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
Transition Time	ttrans	$\begin{aligned} & V_{N O} \text { or } V_{N C}= \pm 10 \mathrm{~V} ; \\ & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=35 \mathrm{pF} ; \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		90	130	ns
			TMIN to TMAX			170	
Break-Before-Make Delay	tD	$\begin{aligned} & V_{N O} \text { or } V_{N C}= \pm 10 \mathrm{~V} \text {; } \\ & R_{L}=300 \Omega \text {; } \\ & C_{L}=35 \mathrm{pF} \text {; Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$	5	10		ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	2			
Charge Injection	Q	$\begin{aligned} & \text { VGEN }=0 ; \text { RGEN }=0 ; \\ & C L=1 n F ; \\ & \text { Figure } 4 \end{aligned}$			2		pC
Off-Isolation	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, R \mathrm{R}=50 \Omega, \\ & C_{L}=5 \mathrm{pF}, \\ & V_{\text {COM }}=1 \mathrm{~V}_{\mathrm{RMS}} ; \end{aligned}$ Figure 5			92		dB
Crosstalk		$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 6 \end{aligned}$			92		
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 H z \text { to } 20 \mathrm{kHz}, \\ & R_{\mathrm{L}}=600 \Omega, 5 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$			0.015		\%
$\mathrm{V}_{\text {No }}$ or $\mathrm{V}_{\text {NC }}$ Off-Capacitance	CNO(OFF), CNC(OFF)	$\mathrm{f}=1 \mathrm{MHz}$; Figure 7			6		pF
COM On-Capacitance	CCom(ON)	$\mathrm{f}=1 \mathrm{MHz}$; Figure 8			17		pF
POWER SUPPLY							
Power-Supply Range				± 4.5		± 20	V
Positive Supply Current	I+	V IN $=5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		38	75	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			100	
		V IN $=0$ or $\mathrm{V}+$	$+25^{\circ} \mathrm{C}$		0.01	1	
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	
Negative Supply Current	1 -	V IN $=0$ or 5 V	$+25^{\circ} \mathrm{C}$		0.01	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	

45ת, SPDT Analog Switch in SOT23-8

ELECTRICAL CHARACTERISTICS—Single +12V Supply
$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V_{NO}, V_{NC}, $V_{C O M}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & I_{C O M}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}=+10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		68	90	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			115	
On-Resistance Matching Between Channels	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{ICOM}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}=+10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.7	6	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			7	
On-Resistance Flatness (Note 4)	RFLAT (ON)	$\begin{aligned} & \text { ICOM }=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}=+2 \mathrm{~V},+6 \mathrm{~V} \text {, } \\ & +10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		9	17	Ω
			TMIN to TMAX			23	
DYNAMIC							
Transition Time	tTRANS	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0$, 10V or 10V, 0; $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$ Figure 2	$+25^{\circ} \mathrm{C}$		116	165	ns
			$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$			200	
Break-Before-Make Delay	tD	$\begin{aligned} & V_{N O} \text { or } V_{N C}= \\ & +10 \mathrm{~V} ; R_{L}=300 \Omega ; \\ & C_{L}=35 p F ; \end{aligned}$ Figure 3	$+25^{\circ} \mathrm{C}$	1	36		ns
			TMIN to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0 ; R_{G E N}=0 ; \\ & C_{L}=1 n F ; \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		1		pC
POWER SUPPLY							
Power Supply Range				9		36	V
Positive Supply Current	$1+$	V IN $=+5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		22	40	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			50	
		V IN $=0$ or $\mathrm{V}+$	$+25^{\circ} \mathrm{C}$		0.01	1	
			TMIN to TMAX			10	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: All parts are 100% tested at $+25^{\circ}$. Limits across the full temperature range are guaranteed by design and correlation.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

45 2, SPDT Analog Switch in SOT23-8

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

45』, SPDT Analog Switch in SOT23-8

Pin Description

PIN	NAME	
1	COM	Analog Switch Common
2	NC	Normally Closed Switch Terminal. NC is connected to COM when IN is low.
3	GND	Ground
4	V+	Positive Supply Voltage Input
5	N.C.	No Connection
6	IN	Digital Control Input
7	V-	Negative Supply Voltage Input
8	NO	Normally Open Switch Terminal. NO is connected to COM when IN is high.

Detailed Description
The MAX4649 is a high-voltage, single-pole/doublethrow (SPDT) analog switch that operates from dual $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supplies or from a single +9 V to +36 V supply. The MAX4649 has one normally closed (NC) switch and one normally open (NO) switch. CMOS switch construction allows bidirectional processing of rail-to-rail analog signals.
The MAX4649 has break-before-make switching. The transition time for switching from one input to the other is typically $90 n \mathrm{~ns}$. The off-leakage is typically less than 10 pA , and on-leakage is typically less than 20pA.

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $V+$ on first, then V-, followed by the logic inputs, NO_{-}, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins (Figure 1). Adding diodes reduces the analog signal range to one diode drop below $\mathrm{V}+$ and one diode drop above V -, but does not affect the device's low switch resistance and low

45,, SPDT Analog Switch in SOT23-8

leakage characteristics. Device operation is unchanged, and the difference between $V+$ and V - should not exceed 44 V . These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies

In 50Ω systems, the high-frequency on-response of these parts extends from DC to above 300 MHz , with a typical loss of -3.6 dB . When the switch is turned off,
however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. This effect is more pronounced with higher source and load impedances. Above 5 MHz , circuit board layout becomes critical. The graphs shown in the Typical Operating Characteristics were taken using a 50Ω source and load connected with BNC connectors.

Test Circuits/Timing Diagrams

Figure 1. Overvoltage Protection

Figure 2. MAX4649 Transition Time

45 , SPDT Analog Switch in SOT23-8

Figure 3. MAX4649 Break-Before-Make Test Circuit

Figure 4. Charge Injection

45,, SPDT Analog Switch in SOT23-8

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation

Figure 6. Crosstalk Between Switches

Figure 7. Channel-Off Capacitance

Figure 8. COM On-Capacitance

Chip Information
TRANSISTOR COUNT: 33
PROCESS TECHNOLOGY: CMOS

45 Ω, SPDT Analog Switch in SOT23-8

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
MAX4649EKA+T

