
6367254 MOTOROLA SC (XSTRS/R F)

96D 82620 D T-31-25

3N211 3N212 3N213

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL -- DEPLETION

Refer to MPF211 for graphs.

Max

Unit

dΒ

3.5 4.0

Min

Symbol

NF

MAXIMUM RATINGS

FUNCTIONAL CHARACTERISTICS

Noise Figure $$$\{V_{DD} = 18\ V_{dc}, V_{GG} = 7.0\ V_{dc}, f = 200\ MHz\}$$$$\{V_{DD} = 24\ V_{dc}, V_{GG} = 6.0\ V_{dc}, f = 45\ MHz\}$$$$$$$$$

Rating	Symbol	3N211 3N212	3N213	Unit
Drain-Source Voltage	V _{DS}	27	35	Vdc
Drain-Gate Voltage .	V _{DG1} V _{DG2}	35 35	40 40	Vdc
Drain Current	ΙĐ	50		mAdc
Gate Current	IG1 IG2	±10 ±10		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.4		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0		Watt mW/°C
Lead Temperature, 1/16" From Seated Surface for 10 seconds	TL	3(00	°C
Junction Temperature Range	TJ	-65 to	+ 175	°C
Storage Temperature Range	T _{stg}	65 to	+ 175	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \; (\textbf{T}_{\mbox{A}} = 25^{\circ} \mbox{C unless otherwise noted.})$

Characteristic

OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage(1) $\{I_D = 10 \ \mu Adc, V_{G1S} = V_{G2S} = -4.0 \ Vdc\}$	3N211,212 3N213	V(BR)DSX	25 30	_	Vdc
Instantaneous Drain-Source Breakdown Voltage) $\{I_D=10~\mu\text{Adc}, V_{G1S}=V_{G2S}=-4.0~\text{Vdc}\}$	3N211,212 3N213	V _{(BR)DSX}	27 35	_	Vdc
Gate 1-Source Breakdown Voltage(2) (I _{G1} = ±10 mAdc, V _{G2S} = V _{DS} = 0)		V(BR)G1SO	±6.0	_	Vdc
Gate 2-Source Breakdown Voltage(2) (I _{G2} = ±10 mAdc, V _{G1S} = V _{DS} = 0)		V(BR)G2SO	±6.0	_	Vdc
Gate 1 Leakage Current (VG1S = ±5.0 Vdc, VG2S = VDS = 0) (VG1S = -5.0 Vdc, VG2S = VDS = 0, TA = 150°C)		l _{G1SS}		±10 ~10	nAdc μAdc
Gate 2 Leakage Current (VG2S = ±5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C)		lG2SS	=	±10 -10	nAdc μAdc
Gate 1 to Source Cutoff Voltage (V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = 20 μAdc)	3N211,213 3N212	VG1S(off)	- 0.5 0.5	-5.5 -4.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 Vdc, VG1S = 0, ID = 20 μ Adc)	3N211 3N212,213	VG2S(off)	- 0.2 - 0.2	-2.5 -4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(3) (VDS = 15 Vdc, VG1S = 0, VG2S = 4.0 Vdc)		IDSS	6.0	40	mAdc
SMALL-SIGNAL CHARACTERISTICS					•
Forward Transfer Admittance(4) $V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz}$	3N211,212 3N213	lYfsl	17 15	40 35	mmhos
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 1.0 \text{ mAdc}, f = 1.0 \text{ MHz})$		C _{rss}	0.005	0.05	pF

MOTOROLA SMALL-SIGNAL SEMICONDUCTORS

3N211

3N211,13

6-92

96D 82621

3N211, 3N212, 3N213

T-31-25

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

6367254 MOTOROLA SC (XSTRS/R F)

Characteristic		5ymbol	Min	Max	Unit
Common Source Power Gain (VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz) (VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz) (VDD = 18 Vdc, f _{1.0} = 245 MHz, f _{RF} = 200 MHz)	3N211 3N211 3N213 3N212	G _{ps}	24 29 27 21	35 37 35 28	dB
Bandwidth (VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (VDD = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz) (VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz)	3N211 3N212 3N211,213	BW	5.0 4.0 3.5	12 7.0 6.0	MHz
Gain Control Gate-Supply Voltage(5) $(V_{DD}=18~Vdc, \Delta G_{ps}=-30~dB, f=200~MHz)$ $(V_{DD}=24~Vdc, \Delta G_{ps}=-30~dB, f=45~MHz)$	3N211 2N211,213	V _{GG} (GC)		-2.0 ±1.0	Vdc

(1) Measured after five seconds of applied voltage.
(2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.
(3) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.
(4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground.
(5) N.G. is defined as the change in G-x from the value at Vcc = 7.0 Volts (3N211) and Vcc = 6.0 Volts (3N213).

(5) ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG}=7.0$ Volts (3N211) and $V_{GG}=6.0$ Volts (3N213). (6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_{c} .