September 1983 Revised February 1999

8-Channel 3-STATE Multiplexer

General Description

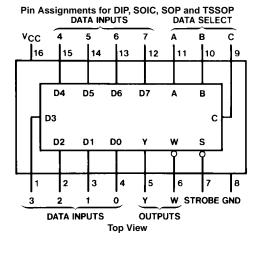
FAIRCHILD

The MM74HC251 8-channel digital multiplexer with 3-STATE outputs utilizes advanced silicon-gate CMOS technology. Along with the high noise immunity and low power consumption of standard CMOS integrated circuits, it possesses the ability to drive 10 LS-TTL loads. The large output drive capability and 3-STATE feature make this part ideally suited for interfacing with bus lines in a bus oriented system.

This multiplexer features both true (Y) and complement (W) outputs as well as a STROBE input. The STROBE must be at a low logic level to enable this device. When the STROBE input is HIGH, both outputs are in the high impedance state. When enabled, address information on the data select inputs determines which data input is routed to the Y and W outputs. The 74HC logic family is speed, function, as well as pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

Features

- Typical propagation delay Data select to Y: 26 ns
- Wide supply range: 2–6V
- Low power supply quiescent current: 80 μA maximum (74HC)
- 3-STATE outputs for interface to bus oriented systems


Ordering Code:

Order Number	Package Number	Package Description
MM74HC251M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HC251SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC251MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC251N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

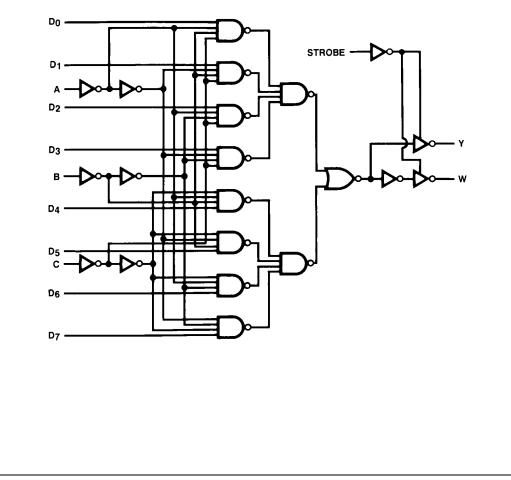
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

© 1999 Fairchild Semiconductor Corporation

DS005328.prf

www.fairchildsemi.com


MM74HC251

	Inputs			Outputs		
	Select		Strobe	v	w	
С	В	Α	S	,		
Х	Х	Х	Н	Z	Z	
L	L	L	L	D0	D0	
L	L	н	L	D1	D1	
L	н	L	L	D2	D2	
L	н	н	L	D3	D3	
н	L	L	L	D4	D4	
н	L	Н	L	D5	D5	
н	н	L	L	D6	D6	
н	н	н	L	D7	D7	

 $\label{eq:H} \begin{array}{l} \mathsf{H} = \mathsf{HIGH} \ \mathsf{Logic} \ \mathsf{Level}, \ \mathsf{L} = \mathsf{LOW} \ \mathsf{Logic} \ \mathsf{Level} \\ \mathsf{X} = \mathsf{Irrelevant}, \ \mathsf{Z} = \mathsf{High} \ \mathsf{Impedance} \ \mathsf{(off)} \\ \mathsf{D0}, \ \mathsf{D1.} \ \ . \ \mathsf{D7} = \mathsf{The} \ \mathsf{level} \ \mathsf{of} \ \mathsf{the} \ \mathsf{respective} \ \mathsf{D} \ \mathsf{input} \end{array}$

Logic Diagram

Truth Table

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

(Note 2)	-
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V_{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are thos	e values	beyond wh	ich dam-

MM74HC251

age to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

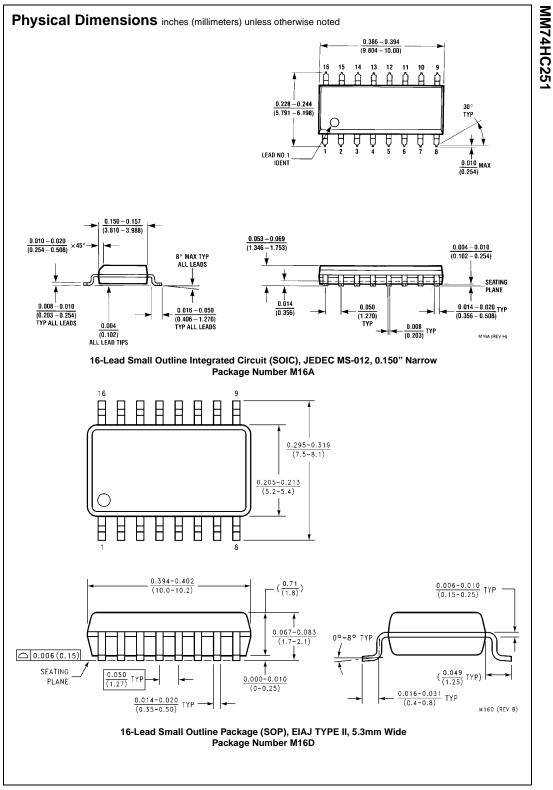
$T_A = 25^{\circ}C$ $T_{A}=-40$ to $85^{\circ}C$ $\ensuremath{\ T_{A}}=-55$ to $125^{\circ}C$ Conditions v_{cc} Units Symbol Parameter Тур **Guaranteed Limits** V_{IH} Minimum HIGH Level 2 0V 1.5 1.5 1.5 V 4.5V V Input Voltage 3 15 3 15 3 15 6.0V 4.2 V 4.2 4.2 VIL Maximum LOW Level 2.0V 0.5 0.5 0.5 ۷ Input Voltage 4.5V 1.35 1.35 1.35 ٧ 6.0V v 1.8 1.8 1.8 Vон Minimum HIGH Level $V_{IN} = V_{IH} \text{ or } V_{IL}$ $|I_{OUT}| \le 20 \ \mu A$ 2.0V 2.0 V Output Voltage 1.9 1.9 1.9 4.5V 4.5 4.4 4.4 4.4 V 6.0V 6.0 5.9 5.9 5.9 V $V_{IN} = V_{IH} \text{ or } V_{IL}$ $|I_{OUT}| \le 4.0 \text{ mA}$ 4.5V 3.98 3.84 V 4.2 3.7 $|I_{OUT}| \le 5.2 \text{ mA}$ 6.0V 5.7 5.48 5.34 5.2 V Maximum LOW Level VOL $V_{IN} = V_{IH} \text{ or } V_{IL}$ Output Voltage $|I_{OUT}| \le 20 \ \mu A$ 2.0V 0 0.1 0.1 0.1 V 4 5V 0 0.1 0.1 0.1 V V 6.0V 0 0.1 0.1 0.1 $V_{IN} = V_{IH} \text{ or } V_{IL}$ $|I_{OUT}| \le 4.0 \text{ mA}$ 4.5V 0.2 0.26 0.33 0.4 V $|I_{OUT}| \le 5.2 \text{ mA}$ 6.0V 0.2 0.26 0.33 V 0.4 Maximum Input $V_{IN} = V_{CC}$ or GND 6.0V ±0.1 ±1.0 ±1.0 I_{IN} μΑ Current Maximum 3-STATE Strobe = V_{CC} 6.0V ±0.5 ±5 ±10 I_{OZ} μΑ Leakage Current $V_{OUT} = V_{CC} \text{ or } GND$ Maximum Quiescent $V_{IN} = V_{CC}$ or GND 6.0V 8.0 80 160 Icc μΑ $I_{OUT} = 0 \ \mu A$ Supply Current

DC Electrical Characteristics (Note 4)

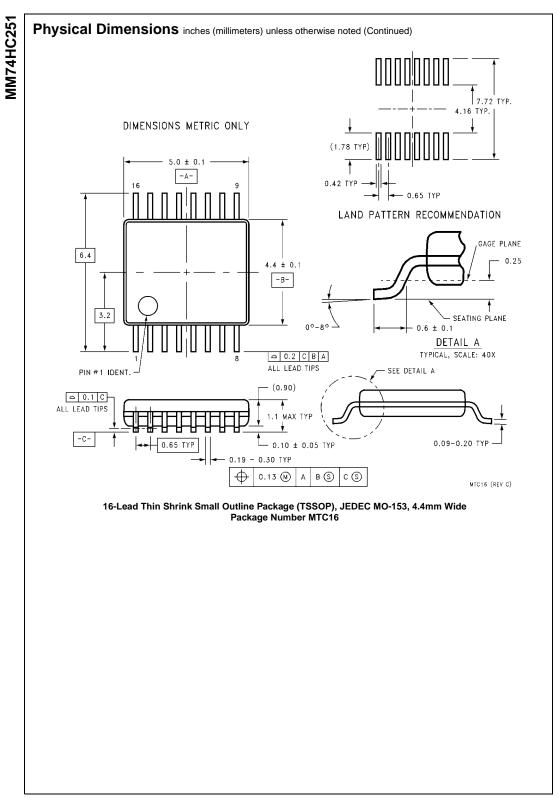
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

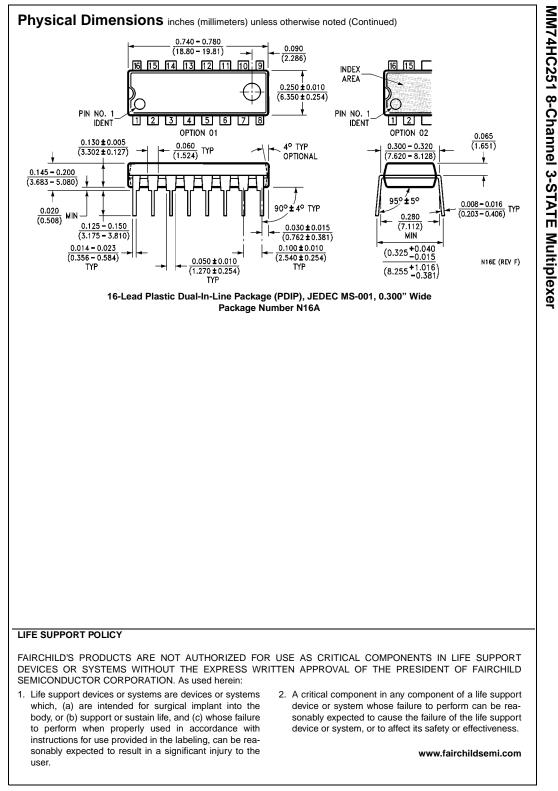
~
ŝ
2
υ
I
4
~
5
Σ

AC Electrical Characteristics


Symbol	Parameter	Conditions		Guaranteed Limit	Units	
t _{PHL} , t _{PLH}	Maximum Propagation Delay		26	35	ns	
	A, B or C to Y					
t _{PHL} , t _{PLH}	Maximum Propagation		27	35	ns	
	Delay, A, B or C to W					
t _{PHL} , t _{PLH}	Maximum Propagation		22	29	ns	
	Delay, Any D to Y					
t _{PHL} , t _{PLH}	Maximum Propagation		24	32	ns	
	Delay, Any D to W					
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$	19	27	ns	
	Time, W Output	$C_L = 50 \text{ pF}$				
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$	19	26	ns	
	Time, Y Output	$C_L = 50 \text{ pF}$				
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$	26	40	ns	
	W Output	C _L = 5 pF				
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$	27	35	ns	
	Y Output	$C_L = 5 pF$				

AC Electrical Characteristics


 $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)


Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units			
Symbol	Parameter	Conditions	▼CC	Тур		Guaranteed L	imits	Units			
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	90	205	256	300	ns			
	A, B or C to Y		4.5V	31	41	51	60	ns			
			6.0V	26	35	44	51	ns			
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	95	205	256	300	ns			
	Delay, A, B or C to W		4.5V	32	41	51	60	ns			
			6.0V	27	35	44	51	ns			
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	70	195	244	283	ns			
	Delay, any D to Y		4.5V	27	39	49	57	ns			
			6.0V	23	33	41	48	ns			
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	75	185	231	268	ns			
	Delay, any D to W		4.5V	29	37	46	54	ns			
			6.0V	25	32	40	46	ns			
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 k\Omega$	2.0V	45	150	188	218	ns			
	W Output		4.5V	21	30	38	44	ns			
			6.0V	18	26	33	38	ns			
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 k\Omega$	2.0V	45	145	181	210	ns			
	Y Output		4.5V	21	29	36	42	ns			
			6.0V	18	25	31	36	ns			
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$	2.0V	60	220	275	319	ns			
	W Output		4.5V	29	44	55	64	ns			
			6.0V	25	37	46	54	ns			
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$	2.0V	60	195	244	283	ns			
	Y Output		4.5V	30	39	49	57	ns			
			6.0V	26	33	41	48	ns			
t _{THL} , t _{TLH}	Maximum Output Rise		2.0V	30	75	95	110	ns			
	and Fall Time		4.5V	8	15	19	22	ns			
			6.0V	7	13	16	19	ns			
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)	1	110				pF			
CIN	Maximum Input Capacitance			5	10	10	10	pF			

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>MM74HC251M</u> <u>MM74HC251N</u> <u>MM74HC251SJ</u> <u>MM74HC251MX</u> <u>MM74HC251MTC</u> <u>MM74HC251SJX</u> MM74HC251MTCX