ATC 200 B Series **BX** Ceramic Multilayer Capacitors

- Case B Size (.110" x .110")
- Capacitance Range 5000 pF to 0.1 µF
- Low ESR/ESL • Mid-K
- Rugged Construction High Reliability
- Available with Encapsulation Option*

ATC, the industry leader, offers new improved ESR/ESL performance for the 200 B Series Capacitors. This Series exhibits high volumetric efficiency with superior IR characteristics. Ceramic construction provides a rugged, hermetic package.

ATC offers an encapsulation option for applications requiring extended protection against arc-over and corona.

Typical functional applications: Bypass, Coupling and DC Blocking.

Typical circuit applications: Switching Power Supplies and High Power Broadband Coupling.

*For leaded styles only.

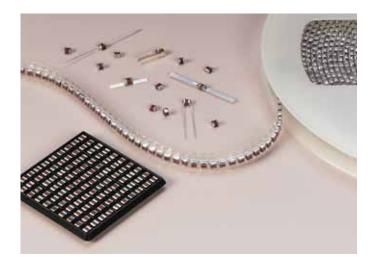
ENVIRONMENTAL TESTS

ATC 200 B Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK:

MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE:


MIL-STD-202. Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

DISSIPATION FACTOR (DF): 2.5% max. @ 1 KHz

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC): ±15% maximum (-55°C to +125°C)

INSULATION RESISTANCE (IR):

5000 pF to 0.1 MFd:

- 10⁴ Megohms min. @ +25°C at rated WVDC.
- 10³ Megohms min. @ +125°C at rated WVDC.

WORKING VOLTAGE (WVDC):

See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Case B: 250% of rated WVDC for 5 secs. (125 VDC)

AGING EFFECTS: 3% maximum per decade hour.

PIEZOELECTRIC EFFECTS: Negligible

DIELECTRIC ABSORPTION: 2% typical

OPERATING TEMPERATURE RANGE:

From -55°C to +125°C (No derating of working voltage).

TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211. Test per MIL-STD-202, method 211.

ATC North America 631-622-4700 sales@atceramics.com TECHNICAL

ATC Europe +46 8 6800410 sales@atceramics-europe.com sales@atceramics-asia.com

ATC Asia +86-755-8366-4318

CERAMICS

www.atceramics.com

ATC 200 B Capacitance Values

CAP. CODE	CAP. (pF)	TOL.	RATED WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED WVDC
502	5000			273	27,000		
562	5600			333	33,000		
682	6800			393	39,000		
822	8200			473	47,000		
103	10,000	K, M, N	50	503	50,000	K, M, N	50
123	12,000	1, 1, 1, 1,	00	563	56,000	1, 1, 1, 1, 1,	00
153	15,000			683	68,000		
183	18,000			823	82,000		
203	20,000			104	100,000		
223	22,000						

VRMS = 0.707 x WVDC

• SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

> CAPACITANCE TOLERANCE

Code	K	М	Ν
Tol.	±10%	±20%	±30%

ATC F ATC200 B	PART NL <u>82</u> 2		R COD W 50	E X C	
Series	TT	T	ΤΤ	ΤT	- Packaging
Case Size					T - Tape and Reel, 1000 pc. qty.*
Capacitance Code:					 TV - Vertical Orientation of Product, Tape and Reel, 1000 pc. qty.* C - ATC Cap-Pac[®], 100 pc. qty. std.* I - Special Packaging. Consult Factory. *Consult ATC for other quantities
Capacitance Tolerance					Laser Marking
Termination Code					WVDC

The above part number refers to a 200 B Series (case size B) 8200 pF capacitor,

M tolerance (±20%), 50 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and ATC Cap-Pac® packaging.

ATC accepts orders for our parts using designations with or without the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

ATC Europe

ATC Asia

ATC North America +46 8 6800410 • sales@atceramics-europe.com 631-622-4700 • sales@atceramics.com +86-755-8366-4318 • sales@atceramics-asia.com

ATC 200 B Capacitors: Mechanical Configurations

ATC Series	ATC TERM.	CASE SIZE	OUTLINES		DY DIMENSI Inches (mm)			EAD AND TEF ENSIONS AN	RMINATION D MATERIALS	5		
& CASE Size	CODE	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)		MATERIALS			
200B	W	B Solder Plate	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & & \\ & & & \\ \hline & & & \\ & \rightarrow \mid L \mid \leftarrow^{\uparrow} \rightarrow \mid T \mid \leftarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			Tin /Lead, Solder Plated over Nickel Barrier Termination				
200B	Ρ	B Pellet	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ \rightarrow \parallel \ \ \ \ \ \ \ \ \ \ \ \ \$.110 +.035010 (2.79 +0.89 -0.25)	(2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, over Nickel Barrier Termination				
200B	Т	B Solderable Nickel Barrier	$\begin{array}{c} Y \rightarrow \left\ \leftarrow \\ & \blacksquare \end{array} \right\ \underbrace{w}_{\rightarrow} \\ \rightarrow \left L \right \leftarrow^{\uparrow} \rightarrow \left T \right \leftarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)		1.010 (0.23)	RoHS Compliant Tin Plated over Nickel Barrier Termination				
200B	CA	B Gold Chip	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ \hline & \hline & \hline \\ \rightarrow \mid L \mid \leftarrow^{\uparrow} \rightarrow \mid T \mid \leftarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination				
200B	MS	B Microstrip	$\begin{array}{c} \downarrow \qquad \rightarrow \mid \downarrow_{L} \mid \leftarrow \qquad \downarrow \qquad \downarrow_{L} \\ \hline \underbrace{w_{L}} \qquad \underbrace{w_{L} \qquad \underbrace{w_{L}} \qquad \underbrace{w_{L}} \qquad w_$.120 (3.05) max.		LENGTH (L _L)	WIDTH (W _L)	THICKNESS		
200B	AR	B Axial Ribbon	$\begin{array}{c} \downarrow \qquad \rightarrow \mid \downarrow_{L} \mid \leftarrow \qquad \downarrow \rightarrow \mid \mid \leftarrow \\ \hline W_{L} \qquad \hline W_{L} \qquad \hline W_{L} \qquad \hline W_{L} \qquad \hline \end{array} \qquad \qquad$.135 ±.015 (3.43 ±0.38)	.110 ±.015 (2.79 ±0.38)		N/A	.250 (6.35) min.	.093 ±.005 (2.36 ±0.13)	.004 ±.001 (.102 ±.025)		
200B	RR	B Radial Ribbon	$ \begin{array}{c c} & & & & \rightarrow & \ L & \ \leftarrow & & \\ \hline & & & \\ \hline & & & \\ \hline \\ \hline$									
200B	RW	B Radial Wire	$ \begin{array}{c} \begin{array}{c} & \rightarrow & \ L_{L} \leftarrow \\ \hline \\ \hline \\ \end{array} \\ \rightarrow & \ L \ \leftarrow \end{array} \begin{array}{c} \begin{array}{c} \\ \hline \\ \\ \end{array} \\ \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ W \leftarrow \end{array} $.145 ±.020						.500 (12.7)	#26 A .016 (.4	
200B	AW	B Axial Wire	$ \begin{array}{c c} \rightarrow & \downarrow & \downarrow \\ \hline & & \downarrow \\ \hline & & & \hline \\ \hline & & & \hline \\ \rightarrow & \downarrow & \downarrow \\ \hline & & & \hline \\ \rightarrow & \downarrow & \downarrow \\ \hline \\ \hline \\ \hline \end{array} $	(3.68 ±0.51)				min.		ninal		

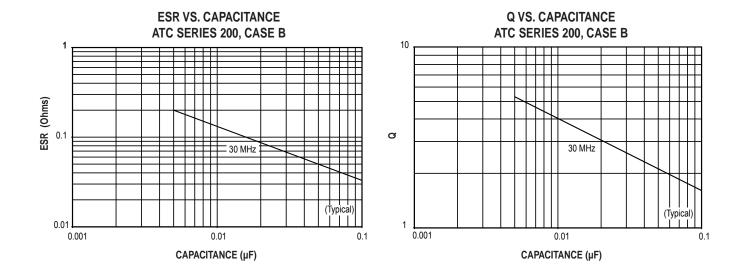
Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant. For a complete military catalog, request American Technical Ceramics document ATC 001-818.

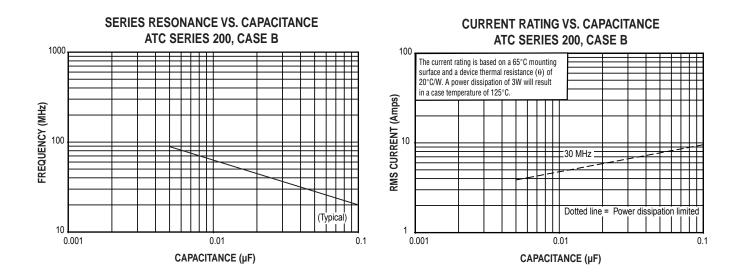
AMERICAN TECHNICAL CERAMICS ATC North America

ATC Europe

ATC Asia +46 8 6800410 • sales@atceramics-europe.com 631-622-4700 • sales@atceramics.com +86-755-8366-4318 • sales@atceramics-asia.com

ATC 200 B Capacitors: Non-Magnetic Mechanical Configurations


ATC SERIES	ATC Term.	CASE SIZE	OUTLINES	-	DY DIMENSI Inches (mm)			EAD AND TEI Ensions An	RMINATION D MATERIALS	3
& CASE SIZE	CODE	& TYPE	W/T IS A Termination surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)		MATERIALS	
200B	WN	B Non-Mag Solder Plate	$\begin{array}{c c} Y \rightarrow & \downarrow \\ & & \\ & & \\ \hline \\ \rightarrow & \downarrow \\ L & \downarrow \\ \hline \\ \downarrow \\ \hline \\$.110 +.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)				ted over ermination	
200B	PN	B Non-Mag Pellet	$\begin{array}{c c} Y \rightarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow & \downarrow \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & & \\ &$.110 +.035010 (2.79 +0.89 -0.25)	(2.79 ±0.38)		.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Terminatic		
200B	TN	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \rightarrow & \downarrow \\ & & \\ & & \\ \hline \\ \rightarrow & \downarrow \\ L & \leftarrow^{\uparrow} \rightarrow & T \\ \hline \\ \end{array}$.110 +.025010 (2.79 +0.64 -0.25)	(2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		
200B	MN	B Non-Mag	$\begin{array}{c} \downarrow \qquad \rightarrow \mid \downarrow_{L} \mid \leftarrow \qquad \downarrow \qquad \downarrow_{L} \mid \leftarrow \\ \hline \underline{W_{L}} \qquad $.120 (3.05) max.	_	LENGTH (L _L)	WIDTH (W _L)	THICKNESS
200B	AN	B Non-Mag Axial Ribbon	$\begin{array}{c} \downarrow \qquad \rightarrow \mid \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.135 ±.015 (3.43 ±0.38)	1 1	.100 (2.54) max.		.250 (6.35) min.	.093 ±.005 (2.36 ±0.13)	.004 ±.001 (.102 ±.025)
200B	FN	B Non-Mag Radial Ribbon	$ \begin{array}{c c} & & & & \rightarrow & \downarrow &$							
200B	RN	B Non-Mag Radial Wire	$ \begin{array}{c} & \rightarrow \mid \iota_{L} \mid \leftarrow \\ & & \uparrow \\ \rightarrow \mid L \mid \leftarrow & \rightarrow \mid w \mid \leftarrow \end{array} $.145 ±.020	(2.79 ±0.38)			.500 (12.7)	#26 AWG., .016 (.406) dia.	
200B	BN	B Non-Mag Axial Wire	$ \begin{array}{c c} \rightarrow & \downarrow \\ \hline \\ \hline \\ \rightarrow & \downarrow \\ \downarrow \\ \hline \\ \hline \\ \rightarrow & \downarrow \\ \downarrow \\ \downarrow \\ \leftarrow \\ \end{array} \begin{array}{c c} \leftarrow & \downarrow \\ \hline \\$	(3.68 ±0.51)				min.	nom	· ·


Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

Suggested Mounting Pad Dimensions

		Case	l Mount	nt		
		Pad Size	A Min.	B Min.	C Min.	D Min.
	All#	Normal	.120	.050	.075	.175
	values	High Density	.100	.030	.075	.135
Horizontal#Vertical#strode OrientationElectrode Orientation $ - B - + $ $ - B - + $		н	orizontal N	lount		
	All	Normal	.130	.050	.075	.175
A - C	values	High Density	.110	.030	.075	.135
↓ D						

ATC 200 B Performance Data

AMERICAN TECHNICAL CERAMICS

ATC North America ATC Europe ATC Asia 631-622-4700 • sales@atceramics.com +46 8 6800410 • sales@atceramics-europe.com +86-755-8366-4318 • sales@atceramics-asia.com

www.atceramics.com

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

TECHNICAL CERAMICS

ATC North America 631-622-4700 sales@atceramics.com

AMERICAN

ATC Europe +46 8 6800410 sales@atceramics-europe.com sales@atceramics-asia.com ISO 9001 REGISTERED

ATC Asia +86-755-8366-4318

HE ENGINEERS' CHOICETM

ATC # 001-815 Rev. J 9/07

www.atceramics.com