New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

MD7002 (SILICON) MD7002A MD7002B

NPN SILICON ANNULAR MULTIPLE TRANSISTORS

...designed for use as differential amplifiers, dual general-purpose amplifiers, front end detectors and temperature compensation applications.

- Excellent Matching Characteristics @ I_C = 100 μAdc hFE1/hFE2 = 0.75 (Min) - MD7002A = 0.85 (Min) - MD7002B
- Low Collector-Emitter Saturation Voltage -VCE(sat) = 0.35 Vdc (Max) @ IC = 10 mAdc
- DC Current Gain Specified @ 100 µAdc and 10 mAdc
- High Current-Gain-Bandwidth Product fT = 260 MHz (Typ) @ IC = 5.0 mAdc

NPN SILICON **MULTIPLE TRANSISTORS**

MAXIMUM RATINGS Unit 40 Vdc Collector-Emitter Voltage VCEO Collector-Base Voltage V_{СВ} 50 Vdc Emitter-Base Voltage V_{EB} Vdc 5.0 Collector-Current 30 mAdc Operating and Storage Junction T_{J} , T_{stg} -65 to +200 Temperature Range

		One Die	Both Die Equal Power	
Total Power Dissipation & TA = 25°C Derate above 25°C	PD	575 , 3.29	625 3.57	mW/°C
Total Power Dissipation © T _C = 25°C Derate above 25°C	Po	1.8 10.3	2.5 14.3	Watts mW/ ^O C

Cheracteristic	Symbol	One Die	Both Die Equal Power	Unit
Thermal Resistance, Junction to Ambient	ReJA(1)	304	280	°C/W
Thermal Resistance, Junction to Case	ReJC	97	70	oc.₩
<u> </u>		Junction to Ambient	Junction to Case	
Coupling Factors		84	44	%

Reja is measured with the device soldered into a typical printed circuit board.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

MD7002, MD7002A, MD7002B (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs. The junction temperature can be calculated as follows:

(1) ATJ1 = Re1 PD1 + Re2 Ke2 PD2

Where ΔT_{J1} is the change in junction temperature of die 1 $R_{\theta 1}$ and $R_{\theta 2}$ is the thermal resistance of die 1 and die 2 P_{D1} and P_{D2} is the power dissipated in die 1 and die 2 $K_{\theta 2}$ is the thermal coupling between die 1 and die 2.

An effective package thermal resistance can be defined as follower:

(2) $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$

Where P_{DT} is the total package power dissipation.

Assuming équal thérmal resistance for each die, equation (1) simplifies to:

(3) ATJ1 = Re1 (PD1 + Ke2 PD2)

For the conditions where $P_{D1} = P_{D2} = P_{D1} = 2 P_{D}$, equation (3) can be further simplified and by substituting into equation (2) results in:

(4) Re(EFF) + Re1 (1 + Ke2)/2

Values for the coupling factors when either the case or the ambient is used as a reference are given in the table on page 1.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic Symbol		Min	Тур	Mex	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (1) (I _C = 10 mAdc, Ig = 0)	BVCEO	40	-	_	Vdc
Collector-Base Breakdown Voltage (Ic = 10 µAdc, Ig = 0)	BVCBO	50	-	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μAdc, IC = 0)	₿∨EBO	5.0	_	_	Vdc
Collector Cutoff Current (VCB = 30 Vdc, IE = 0)	CBO	-		100	nAdd
N CHARACTERISTICS					
DC Current Gain (1) (IC = 100 µAdc, V _{CE} = 10 Vdc) (IC = 10 mAdc, V _{CE} = 10 Vdc)	yŁE	40 50	130 170	- -	-
Collector-Emitter Saturation Voltage (IC = 10 mAdc, Ig = 1.0 mAdc)	VCE(set)		0.2	0.35	Vdc
Sem-Emitter Saturation Voltage (IC = 10 mAdc, Ig = 1.0 mAdc)	∨BE(set)	_	0.8	1.0	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain-Bandwidth Product (1) (IC = 5.0 mAdc, VCE = 20 Vdc, f = 100 MHz)	fτ	200	260	-	MHz
Output Capacitance (VCB = 10 Vdc, Ig = 0, f = 100 kHz)	Cop	-	2.6	6.0	ρF
Input Capacitance (VBE = 2.0 Vgc, (C = 0, f = 100 kHz)	Cib	-	2.3	8.0	pF
MATCHING CHARACTERISTICS					
DC Current Gain Ratio (2) (IC = 100 μAdc, VCE = 10 Vdc) MD7002A MD7002B	hFE1/hFE2	0.75 0.85	<u>-</u> -	1.0 1.0	
Bess Voltage Differential (IC = 100 μAdc, VCE = 10 Vdc) MD7002A MD7002B	VBE1-VBE2	-	_	25 15	mVdc

⁽¹⁾ Pulse Test: Pulse Width ≤300 µs, Duty Cycle ≤ 2.0%.

⁽²⁾ The lowest hig reading is taken as high for this ratio.