ADS8325

16-Bit, High-Speed, 2.7V to 5.5V microPower Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 16-Bits No Missing Codes
- Very Low Noise: 3LSB pp
- Excellent Linearity: ± 1.5 LSB typ
- microPower:
- 4.5 mW at 100 kHz
- 1 mW at 10 kHz
- MSOP-8 and SON-8 Packages (SON Package Size Same as 3×3 QFN)
- 16-Bit Upgrade to the 12-Bit ADS7816 and ADS7822
- Pin-Compatible With the ADS7816, ADS7822, ADS7826, ADS7827, ADS7829, and ADS8320
- Serial (SPITM/SSI) Interfaces

APPLICATIONS

- Battery-Operated Systems
- Remote Data Acquisition
- Isolated Data Acquisition
- Simultaneous Sampling, Multi-Channel Systems
- Industrial Controls
- Robotics
- Vibration Analysis

DESCRIPTION

The ADS8325 is a 16 -bit, sampling, Analog-to-Digital (A/D) converter specified for a supply voltage range from 2.7 V to 5.5 V . It requires very little power, even when operating at the full 100 kHz data rate. At lower data rates, the high speed of the device enables it to spend most of its time in the power-down mode. For example, the average power dissipation is less than 1 mW at a 10 kHz data rate.
The ADS8325 offers excellent linearity and very low noise and distortion. It also features a synchronous serial (SPI/SSI compatible) interface and a differential input. The reference voltage can be set to any level within the range of 2.5 V to V_{DD}.
Low power and small size make the ADS8325 ideal for portable and battery-operated systems. It is also a perfect fit for remote data acquisition modules, simultaneous multichannel systems, and isolated data acquisition. The ADS8325 is available in MSOP-8 and SON-8 packages. The SON package size is the same as a 3×3 QFN package.

[^0]This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION ${ }^{(1)}$

| PRODUCT | MAXIMUM
 INTEGRAL
 LINEARITY
 ERROR (LSB) | NO MISSING
 CODES ERROR
 (LSB) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS8325I | | |

(1) For the most current specifications and package information, refer to our web site at wWW.ti.com
(2) No Missing Codes Error specifies a 5V power supply and reference voltage.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Over operating free-air temperature range (unless otherwise noted)

	ADS8325	UNIT
Supply voltage, DGND to V_{DD}	-0.3 to 6	V
Analog input voltage ${ }^{(2)}$	-0.3 to $V_{D D}+0.3$	V
Reference input voltage ${ }^{(2)}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Digital input voltage ${ }^{(2)}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input current to any pin except supply	-20 to 20	mA
Power dissipation	See Dissipation Rating Table	
$\mathrm{T}_{J} \quad$ Operating virtual junction temperature range	-40 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }} \quad$ Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 sec	+260	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions of extended periods may affect device reliability.
(2) All voltage values are with respect to ground terminal.

PACKAGE DISSIPATION RATINGS

PACKAGE	$\mathrm{R}_{\text {өJC }}$	$\mathrm{R}_{\text {өJA }}$	DERATING FACTOR ABOVE T $=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ POWER RATING
DGK	$39.1{ }^{\circ} \mathrm{C} / \mathrm{W}$	$206.3^{\circ} \mathrm{C} / \mathrm{W}$	$4.847 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	606 mW	388 mW	315 mW
DRB	$5^{\circ} \mathrm{C} / \mathrm{W}$	$45.8^{\circ} \mathrm{C} / \mathrm{W}$	$3.7 \mathrm{~mW} / \mathrm{C}$	370 mW	204mW	148 mW

EQUIVALENT INPUT CIRCUIT

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted)

		MIN	TYP	MAX	UNIT
Supply voltage, GND to V_{DD}	Low-voltage levels	2.7		3.6	V
	5 V logic levels	4.5	5.0	5.5	V
Reference input voltage		2.5		V_{DD}	V
Analog input voltage	-IN	-0.3	0	0.5	V
	$+\mathrm{IN}-(-\mathrm{IN})$	0		$\mathrm{V}_{\text {REF }}$	V
Operating junction temperature range		-40		+125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$

Over recommended operating free-air temperature at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V},-\mathrm{IN}=\mathrm{GND}, \mathrm{f}_{\mathrm{SAMPLE}}=100 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{CLK}}=$ $24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS8325I			ADS8325IB			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG INPUT								
Full-scale range FSR	$+\mathrm{IN}-(-\mathrm{IN})$	0		$\mathrm{V}_{\text {REF }}$	0		$V_{\text {REF }}$	V
Operating common-mode signal		-0.3		0.5	-0.3		0.5	V
Input resistance	$-\mathrm{IN}=$ GND		5			5		G Ω
Input capacitance	-IN = GND, during sampling		45			45		pF
Input leakage current	$-\mathrm{IN}=\mathrm{GND}$		± 50			± 50		nA
Differential input capacitance	+IN to -IN, during sampling		20			20		pF
Full-power bandwidth FSBW	FS sinewave, SINAD $=-3 \mathrm{~dB}$		20			20		kHz
DC ACCURACY								
Resolution		16			16			Bits
No missing code NMC		15			16			Bits
Integral linearity error INL			± 3	± 6		± 1.5	± 4	LSB
Offset error $\mathrm{V}_{\text {OS }}$			± 0.75	± 1.5		± 0.5	± 1	mV
Offset error drift $\mathrm{TCV}_{\text {OS }}$			± 0.2			± 0.2		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain error $\quad \mathrm{G}_{\text {ERR }}$				± 24			± 12	LSB
Gain error drift \quad TCG $_{\text {ERR }}$			± 3			± 3		ppm $/{ }^{\circ} \mathrm{C}$
Noise			20			20		$\mu \mathrm{VRMS}$
Power-supply rejection	$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V}$		3			3		LSB
SAMPLING DYNAMICS								
Conversion time $\mathrm{t}_{\text {CONV }}$	$24 \mathrm{kHz}<\mathrm{f}_{\mathrm{CLK}} \leq 2.4 \mathrm{MHz}$	6.667		666.7	6.667		666.7	$\mu \mathrm{s}$
Acquisition time t_{AQ}	$\mathrm{f}_{\text {CLK }}=2.4 \mathrm{MHz}$	1.875			1.875			$\mu \mathrm{s}$
Throughput rate				100			100	kSPS
Clock frequency		0.024		2.4	0.024		2.4	MHz
AC ACCURACY								

SBAS226C-MARCH 2002-REVISED AUGUST 2007

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (continued)

Over recommended operating free-air temperature at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}=5 \mathrm{~V},-I \mathrm{~N}=\mathrm{GND}, \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{CLK}}=$ $24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS8325I		ADS8325IB		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Total harmonic distortion THD	$5 \mathrm{~V}_{\mathrm{PP}}$ sinewave, at 1 kHz		-100		-106	dB
Spurious-free dynamic range SFDR	$5 \mathrm{~V}_{\mathrm{PP}}$ sinewave, at 1 kHz		-100		-108	dB
Signal-to-noise ratio SNR			-90		-91	dB
Signal-to-noise + distortion SINAD	$5 \mathrm{~V}_{\mathrm{PP}}$ sinewave, at 1 kHz		-90		-91	dB
Effective number of bits ENOB			14.6		14.7	Bits
VOLTAGE REFERENCE INPUT						
Reference voltage		2.5	$V_{D D}+0.3$	2.5	$V_{D D}+0.3$	V
Reference input resistance	$\overline{\mathrm{CS}}=\mathrm{GND}, \mathrm{f}_{\text {SAMPLE }}=0 \mathrm{~Hz}$		5		5	$\mathrm{k} \Omega$
	$\overline{C S}=V_{D D}$		5		5	G Ω
Reference input capacitance			20		20	pF
Reference input current			$1 \quad 1.5$		$1 \quad 1.5$	mA
	$\overline{C S}=V_{D D}$		0.1		0.1	$\mu \mathrm{A}$
DIGITAL INPUTS ${ }^{(1)}$						
Logic family			MOS		MOS	
High-level input voltage $\quad \mathrm{V}_{\mathrm{IH}}$		$0.7 \times \mathrm{V}_{\mathrm{DD}}$	$V_{D D}+0.3$	$0.7 \times \mathrm{V}_{\mathrm{DD}}$	$V_{D D}+0.3$	V
Low-level input voltage $\quad \mathrm{V}_{\text {IL }}$		-0.3	$0.3 \times \mathrm{V}_{\mathrm{DD}}$	-0.3	$0.3 \times \mathrm{V}_{\mathrm{DD}}$	V
Input current $\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND		± 50		± 50	nA
Input capacitance C_{1}			5		5	pF
DIGITAL OUTPUTS ${ }^{(1)}$						
Logic family			MOS		MOS	
High-level output voltage $\quad \mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	4.44		4.44		V
Low-level output voltage V_{OL}	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.5		0.5	V
High-impedance-state output current	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or GND		± 50		± 50	nA
Output capacitance C_{O}			5		5	pF
Load capacitance C_{L}			30		30	pF
Data format		Stra	ht Binary	Strai	t Binary	

(1) Applies for 5.0 V nominal supply: $\mathrm{V}_{\mathrm{DD}}(\min)=4.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}(\max)=5.5 \mathrm{~V}$.

Texas
INSTRUMENTS
www.ti.com

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=\boldsymbol{+ 2 . 7 V}$

Over recommended operating free-air temperature at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V},-\mathrm{IN}=\mathrm{GND}, \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{CLK}}$ $=24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS8325I			ADS8325IB			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG INPUT								
Full-scale range FSR	$+\mathrm{IN}-(-1 \mathrm{~N})$	0		$V_{\text {REF }}$	0		$\mathrm{V}_{\text {REF }}$	V
Operating common-mode signal		-0.3		0.5	-0.3		0.5	V
Input resistance	$-\mathrm{IN}=\mathrm{GND}$		5			5		G Ω
Input capacitance	-IN = GND, during sampling		45			45		pF
Input leakage current	$-\mathrm{IN}=\mathrm{GND}$		± 50			± 50		nA
Differential input capacitance	+IN to -IN, during sampling		20			20		pF
Full-power bandwidth FSBW	FS sinewave, SINAD $=-3 \mathrm{~dB}$		4			4		kHz
DC ACCURACY								
Resolution		16			16			Bits
No missing code NMC		14			15			Bits
Integral linearity error INL			± 3	± 6		± 1.5	± 4	LSB
Offset error $\mathrm{V}_{\text {OS }}$			± 0.75	± 1.5		± 0.5	± 1	mV
Offset error drift $\mathrm{TCV}_{\text {OS }}$			± 3			± 3		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain error GERR			± 33			± 16		LSB
Gain error drift \quad TCGERR			± 0.3			± 0.3		ppm/ ${ }^{\circ} \mathrm{C}$
Noise			20			20		μ VRMS
Power-supply rejection	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		7			7		LSB
SAMPLING DYNAMICS								
Conversion time $\mathrm{t}_{\text {CONV }}$	$24 \mathrm{kHz}<\mathrm{f}_{\text {CLK }} \leq 2.4 \mathrm{MHz}$	6.667		666.7	6.667		666.7	$\mu \mathrm{s}$
Acquisition time $t_{\text {AQ }}$	$\mathrm{f}_{\mathrm{CLK}}=2.4 \mathrm{MHz}$	1.875			1.875			$\mu \mathrm{s}$
Throughput rate				100			100	kSPS
Clock frequency		0.024		2.4	0.024		2.4	MHz
AC ACCURACY								
Total harmonic distortion THD	$2.5 \mathrm{~V}_{\mathrm{PP}}$ sinewave, at 1 kHz		-94			-94		dB
Spurious-free dynamic range SFDR	$2.5 \mathrm{~V}_{\mathrm{PP}}$ sinewave, at 1 kHz		-96			-96		dB
Signal-to-noise ratio SNR			-85			-86		dB
Signal-to-noise + distortion SINAD	$2.5 \mathrm{~V}_{\mathrm{PP}}$ sinewave, at 1 kHz		-85			-85.5		dB
Effective number of bits ENOB			13.8			13.9		Bits
VOLTAGE REFERENCE INPUT								
Reference voltage		2.5		$+0.3$	2.5		$+0.3$	V
Reference input resistance	$\overline{\mathrm{CS}}=\mathrm{GND}, \mathrm{f}_{\text {SAMPLE }}=0 \mathrm{~Hz}$		5			5		$\mathrm{k} \Omega$
	$\overline{C S}=V_{D D}$		5			5		$\mathrm{G} \Omega$
Reference input capacitance			20			20		pF
Reference input current			0.5	0.75		0.5	0.75	mA
	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$		0.1			0.1		$\mu \mathrm{A}$
DIGITAL INPUTS ${ }^{(1)}$								
Logic family		LVCMOS			LVCMOS			
High-level input voltage V_{IH}	$V_{D D}=3.6 \mathrm{~V}$	2		$+0.3$	2		$+0.3$	V
Low-level input voltage $\mathrm{V}_{\text {IL }}$	$V_{D D}=2.7 \mathrm{~V}$	-0.3		0.8	-0.3		0.8	V
Input current $\quad \mathrm{I}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND			± 50			± 50	nA
Input capacitance C_{1}			5			5		pF

(1) Applies for 3.0 V nominal supply: $\mathrm{V}_{\mathrm{DD}}(\min)=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}(\max)=3.6 \mathrm{~V}$.

SBAS226C-MARCH 2002-REVISED AUGUST 2007

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=\boldsymbol{+ 2 . 7 V}$ (continued)

Over recommended operating free-air temperature at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V},-\mathrm{IN}=\mathrm{GND}, \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{CLK}}$ $=24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

PARAMETER		TEST CONDITIONS	ADS8325I		ADS8325IB		UNIT
			MIN	TYP MAX	MIN	TYP MAX	
DIGITAL OUTPUTS ${ }^{(2)}$							
Logic family			LVCMOS		LVCMOS		
High-level output voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.2$		$\mathrm{V}_{\mathrm{DD}}-0.2$		V
Low-level output voltage	V_{OL}	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	0.2			0.2	V
High-impedance-state output current	loz	$\overline{C S}=V_{D D}, V_{l}=V_{D D}$ or GND	± 50		± 50	± 50	nA
Output capacitance	C_{0}		5		5		pF
Load capacitance	C_{L}		30			30	pF
Data format			Straight Binary		Straight Binary		

(2) Applies for 3.0 V nominal supply: $\mathrm{V}_{\mathrm{DD}}(\min)=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}(\mathrm{max})=3.6 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}},-\mathrm{IN}=\mathrm{GND}, \mathrm{f}_{\mathrm{SAMPLE}}=100 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{CLK}}=$ $24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADS8325I			ADS8325IB			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
POWER-SUPPLY REQUIREMENTS								
Power supply $\quad V_{D D}$	Low-voltage levels	2.7		3.6	2.7		3.6	V
	5 V logic levels	4.5		5.5	4.5		5.5	V
Operating supply current $\quad \mathrm{I}_{\mathrm{DD}}$	$V_{D D}=3 \mathrm{~V}$		0.75	1.5		0.75	1.5	mA
	$V_{D D}=5 \mathrm{~V}$		0.9	1.5		0.9	1.5	mA
Power-down supply current ($\mathrm{I}_{\text {DD }}$	$V_{D D}=3 \mathrm{~V}$		0.1			0.1		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.2			0.2		$\mu \mathrm{A}$
Power dissipation	$V_{D D}=3 \mathrm{~V}$		2.25	4.5		2.25	4.5	mW
	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		4.5	7.5		4.5	7.5	mW
Power dissipation in power-down	$V_{D D}=3 V, \overline{C S}=V_{D D}$		0.3			0.3		$\mu \mathrm{W}$
	$V_{D D}=5 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$		0.6			0.6		$\mu \mathrm{W}$

Texas
INSTRUMENTS
www.ti.com

PIN CONFIGURATIONS

(1) The thermal pad is internally connected to the substrate. This pad can be connected to the analog ground or left floating. Keep the thermal pad separate from the digital ground, if possible.

PIN ASSIGNMENTS

PIN		$1 / 0^{(1)}$	DESCRIPTION
NAME	NO.		
REF	1	AI	Reference Input
+IN	2	AI	Noninverting Input
-IN	3	AI	Inverting Analog Input
GND	4	P	Ground
$\overline{\mathrm{CS}} / \mathrm{SHDN}$	5	DI	Chip select when low; Shutdown mode when high.
Dout	6	DO	The serial output data word.
DCLOCK	7	DI	Data clock synchronizes the serial data transfer and determines conversion speed.
$+\mathrm{V}_{\mathrm{DD}}$	8	P	Power supply

(1) Al is Analog Input, DI is Digital Input, DO is Digital Output, and P is Power-Supply Connection.

TIMING INFORMATION

NOTE: (1) A minimum of 22 clock cycles are required for 16 -bit conversion; 24 clock cycles are shown. If $\overline{\mathrm{CS}}$ remains low at the end of conversion, a new data stream is shifted out with LSB-first data followed by zeroes indefinitely.

NOTE: (2) After completing the data transfer, if further clocks are applied with $\overline{\mathrm{CS}}$ low, the A / D converter will output zeroes indefinitely.

Load Circuit for $t_{d D O}, t_{r}$, and t_{f}

Voltage Waveforms for $\mathrm{D}_{\text {out }}$ Delay Times, $\mathrm{t}_{\mathrm{dDO}}$

NOTES: (3) Waveform 1 is for an output with internal conditions such that the output is high unless disabled by the output control.
(4) Waveform 2 is for an output with internal conditions such that the output is low unless disabled by the output control.

Figure 1. Timing Diagrams and Test Circuits for the Paramters in Table 1

TIMING INFORMATION (continued)

Table 1. Timing Characteristics

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sample Time	4.5		5.0	Clk Cycles
tconv	Conversion Time		16		Clk Cycles
$\mathrm{t}_{\mathrm{CYC}}$	Throughput Rate			100	kHz
$\mathrm{t}_{\text {CSD }}$	$\overline{\text { CS }}$ Falling to DCLOCK LOW			0	ns
tsucs	$\overline{\text { CS Falling to DCLOCK Rising }}$	20			ns
thDo	DCLOCK Falling to Current $\mathrm{D}_{\text {Out }}$ Not Valid	5	15		ns
$\mathrm{t}_{\text {DIS }}$	$\overline{\text { CS Rising to DOUT 3-State }}$		70	100	ns
t_{EN}	DCLOCK Falling to $\mathrm{D}_{\text {OUT }}$ Enabled		20	50	ns
t_{F}	Dout Fall Time		5	25	ns
t_{R}	Dout Rise Time		7	25	ns

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+\mathbf{5 V}$
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{SAMPLE}}=100 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \times \mathrm{f}_{\mathrm{SAMPLE}}$, unless otherwise noted.

Figure 2.
FREQUENCY SPECTRUM
(8192 Point FFT, $\mathrm{f}_{\mathrm{I}}=1.0132 \mathrm{kHz},-0.2 \mathrm{~dB}$)

Figure 4.
SIGNAL-TO-NOISE RATIO AND SIGNAL-TO-NOISE + DISTORTION vs INPUT FREQUENCY

Figure 6.

DIFFERENTIAL LINEARITY ERROR

Figure 3.
FREQUENCY SPECTRUM
(8192 Point FFT, $\mathrm{f}_{\mathrm{IN}}=\mathbf{1 0 . 0 0 2 2 k H z ,} \mathbf{- 0 . 2} \mathrm{dB}$)

Figure 5.

Figure 7.

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (continued)
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

Figure 8.

Figure 10.

Figure 12.

Figure 9.
CHANGE IN SIGNAL-TO-NOISE + DISTORTION vs TEMPERATURE

Figure 11.

Figure 13.

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (continued)
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \times \mathrm{f}_{\text {SAMPLE }}$, unless otherwise noted.

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+\mathbf{2 . 7} \mathrm{V}$
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \times \mathrm{f}_{\mathrm{SAMPLE}}$, unless otherwise noted.

Figure 15.
FREQUENCY SPECTRUM
(8192 Point FFT, $\mathrm{f}_{\mathrm{IN}}=1.0132 \mathrm{kHz}, \mathbf{- 0 . 2 \mathrm { dB } \text {) }) ~}$

Figure 17.
SIGNAL-TO-NOISE RATIO AND SIGNAL-TO-NOISE + DISTORTION vs INPUT FREQUENCY

Figure 19.

Figure 16.
FREQUENCY SPECTRUM

Figure 18.

Figure 20.

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ (continued)
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{SAMPLE}}=100 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \times \mathrm{f}_{\mathrm{SAMPLE}}$, unless otherwise noted.

Figure 21.

Figure 23.
CHANGE IN UPO vs TEMPERATURE

Figure 22.

Figure 24.

THEORY OF OPERATION

The ADS8325 is a classic Successive Approximation Register (SAR) Analog-to-Digital (A/D) converter. The architecture is based on capacitive redistribution that inherently includes a sample-andhold function. The converter is fabricated on a $0.6 \mu \mathrm{CMOS}$ process. The architecture and process allow the ADS8325 to acquire and convert an analog signal at up to 100,000 conversions per second while consuming less than 4.5 mW from $+\mathrm{V}_{\mathrm{DD}}$.
The ADS8325 requires an external reference, an external clock, and a single power source (V_{DD}). The external reference can be any voltage between 2.5 V and 5.5 V . The value of the reference voltage directly sets the range of the analog input. The reference input current depends on the conversion rate of the ADS8325.

The external clock can vary between 24 kHz (1 kHz throughput) and 2.4 MHz (100 kHz throughput). The duty cycle of the clock is essentially unimportant as long as the minimum high and low times are at least 200 ns ($\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ or greater). The minimum clock frequency is set by the leakage on the internal capacitors to the ADS8325.
The analog input is provided to two input pins: +IN and $-\operatorname{IN}$. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.
The digital result of the conversion is clocked out by the DCLOCK input and is provided serially, most significant bit first, on the Dout pin. The digital data that is provided on the $\mathrm{D}_{\text {Out }}$ pin is for the conversion currently in progress-there is no pipeline delay. It is possible to continue to clock the ADS8325 after the conversion is complete and to obtain the serial data least significant bit first. See the Timing Information section for more information.

ANALOG INPUT

The analog input of ADS8325 is differential. The +IN and $-I N$ input pins allow for a differential input signal. The amplitude of the input is the difference between the $+\mathbb{I N}$ and $-I N$ input, or $(+I N)-(-I N)$. Unlike some converters of this type, the -IN input is not resampled later in the conversion cycle. When the converter goes into the hold mode or conversion, the voltage difference between +IN and -IN is captured on the internal capacitor array.
The range of the -IN input is limited to -0.3 V to +0.5 V . Due to this, the differential input could be used to reject signals that are common to both inputs in the specified range. Thus, the -IN input is best used to sense a remote signal ground that may move slightly with respect to the local ground potential.
The general method for driving the analog input of the ADS8325 is shown in Figure 26 and Figure 27. The -IN input is held at the common-mode voltage. The +IN input swings from -IN (or common-mode voltage) to $-I N+V_{\text {REF }}$ (or commonmode voltage $+\mathrm{V}_{\text {REF }}$), and the peak-to-peak amplitude is $+V_{\text {REF }}$. The value of $V_{\text {REF }}$ determines the range over which the common-mode voltage may vary (see Figure 28). Figure 29 and Figure 30 illustrate the typical change in gain and offset as a function of the common-mode voltage applied to the -IN pin.

Figure 26. Methods of Driving the ADS8325

NOTE: The maximum differential voltage between $+I N$ and $-I N$ of the ADS8325 is $V_{\text {REF }}$. See Figure 28 for a further explanation of the common-mode voltage range for differential inputs.

Figure 27. Differential Input Mode of the ADS8325

SBAS226C-MARCH 2002-REVISED AUGUST 2007

Figure 28. +IN Analog Input: Common-Mode Voltage Range vs $\mathrm{V}_{\text {REF }}$

Figure 29. Change in Gain vs Common-Mode Voltage

Figure 30. Change in Unipolar Offset vs Common-Mode Voltage

The input current required by the analog inputs depends on a number of factors: sample rate, input voltage, source impedance, and power-down mode. Essentially, the current into the ADS8325 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (40 pF) to a 16 -bit settling level within 4.5 clock cycles $(1.875 \mu \mathrm{~s})$. When the converter goes into the hold mode, or while it is in the power-down mode, the input impedance is greater than $1 G \Omega$.
Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the -IN input should not drop below GND 0.3 V or exceed GND +0.5 V . The +IN input should always remain within the range of $\mathrm{GND}-0.3 \mathrm{~V}$ to V_{DD} +0.3 V , or -IN to $-\mathrm{IN}+\mathrm{V}_{\mathrm{REF}}$, whichever limit is reached first. Outside of these ranges, the converter's linearity may not meet specifications.
To minimize noise, low bandwidth input signals with lowpass filters should be used. In each case, care should be taken to ensure that the output impedance of the sources driving the +IN and -IN inputs are matched. Often, a small capacitor (20pF) between the positive and negative inputs helps to match their impedance. To obtain maximum performance from the ADS8325, the input circuit from Figure 31 is recommended.

Texas
Instruments
www.ti.com

Figure 31. Single-Ended and Differential Methods of Interfacing the ADS8325

REFERENCE INPUT

The external reference sets the analog input range. The ADS8325 will operate with a reference in the range of 2.5 V to V_{DD}. There are several important implications to this.
As the reference voltage is reduced, the analog voltage weight of each digital output code is reduced. This is often referred to as the Least Significant Bit (LSB) size and is equal to the reference voltage divided by 65,536 . This means that any offset or gain error inherent in the A/D converter will appear to increase, in terms of LSB size, as the reference voltage is reduced. For a reference voltage of 2.5 V , the value of LSB is $38.15 \mu \mathrm{~V}$, and for reference voltage of 5 V , the LSB is $76.3 \mu \mathrm{~V}$.

The noise inherent in the converter will also appear to increase with lower LSB size. With a 5 V reference, the internal noise of the converter typically contributes only 1.5 LSBs peak-to-peak of potential error to the output code. When the external reference is 2.5 V , the potential error contribution from the internal noise will be 2 times larger (3LSBs). The errors due to the internal noise are Gaussian in nature and can be reduced by averaging consecutive conversion results.

For more information regarding noise, consult Figure 9, Peak-to-Peak Noise vs Reference Voltage. Note that Figure 10, Effective Number Of Bits vs Input Frequency, is calculated based on the converter's signal-to-(noise + distortion) ratio with a 1 kHz , OdB input signal. SINAD is related to ENOB as follows:

$$
\text { SINAD }=6.02 \times \text { ENOB }+1.76
$$

As the difference between the power-supply voltage and reference voltage increases, the gain and offset performance of the converter will decrease. Figure 32 shows the typical change in gain and offset as a function of the difference between the power-supply voltage and reference voltage. For the combination of $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=$ 5 V , offset and gain error will be minimal. The most dramatic difference in offset can be seen when $V_{D D}=$ 5 V and $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$.

Figure 32. Change in Offset and Gain vs the Difference Between Power-Supply and Reference Voltage
dividing the number of codes measured by 6 and this will yield the $\pm 3 \sigma$ distribution, or 99.7%, of all codes. Statistically, up to three codes could fall outside the distribution when executing 1000 conversions. The ADS8325, with <3 output codes for the $\pm 3 \sigma$ distribution, will yield $\mathrm{a}< \pm 0.5 \mathrm{LSBs}$ of transition noise. Remember, to achieve this low-noise performance, the peak-to-peak noise of the input signal and reference must be $<50 \mu \mathrm{~V}$.

Figure 34. 5000 Conversion Histogram of a DC Input

Figure 35. 5000 Conversion Histogram of a DC Input

AVERAGING

The noise of the A/D converter can be compensated by averaging the digital codes. By averaging conversion results, transition noise will be reduced by a factor of $1 / \sqrt{n}$, where n is the number of averages. For example, averaging four conversion results will reduce the transition noise from $\pm 0.5 \mathrm{LSB}$ to ± 0.25 LSB. Averaging should only be used for input signals with frequencies near DC.

For AC signals, a digital filter can be used to low-pass filter and decimate the output codes. This works in a similar manner to averaging; for every decimation by 2 , the signal-to-noise ratio will improve 3dB.

DIGITAL INTERFACE

SIGNAL LEVELS

The ADS8325 has a wide range of power-supply voltage. The A/D converter, as well as the digital interface circuit, is designed to accept and operate from 2.7 V up to 5.5 V . This voltage range will accommodate different logic levels.
When the ADS8325's power-supply voltage is in the range of 4.5 V to 5.5 V (5 V logic level), the ADS8325 can be connected directly to another 5 V CMOS integrated circuit.
Another possibility is that the ADS8325's power-supply voltage is in the range of 2.7 V to 3.6 V . The ADS8325 can be connected directly to another 3.3V LVCMOS integrated circuit.

SERIAL INTERFACE

The ADS8325 communicates with microprocessors and other digital systems via a synchronous 3 -wire serial interface, as illustrated in the Timing Information section. The DCLOCK signal synchronizes the data transfer with each bit being transmitted on the falling edge of DCLOCK. Most receiving systems will capture the bitstream on the rising edge of DCLOCK. However, if the minimum hold time for $D_{\text {Out }}$ is acceptable, the system can use the falling edge of DCLOCK to capture each bit.
A falling $\overline{C S}$ signal initiates the conversion and data transfer. The first 4.5 to 5.0 clock periods of the conversion cycle are used to sample the input signal. After the fifth falling DCLOCK edge, $D_{\text {out }}$ is enabled and will output a LOW value for one clock period. For the next 16 DCLOCK periods, $D_{\text {out }}$ will output the conversion result, most significant bit first. After the least significant bit (B0) has been output, subsequent clocks will repeat the output data, but in a least significant bit first format.

After the most significant bit (B15) has been repeated, Dout will tri-state. Subsequent clocks will have no effect on the converter. A new conversion is initiated only when $\overline{\mathrm{CS}}$ has been taken HIGH and returned LOW.

DATA FORMAT

The output data from the ADS8325 is in Straight Binary format (see Figure 36. This figure represents the ideal output code for a given input voltage and does not include the effects of offset, gain error, or noise.

Figure 36. Ideal Conversion Characteristics (Condition: $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$)

Texas
INSTRUMENTS
www.ti.com

POWER DISSIPATION

The architecture of the converter, the semiconductor fabrication process, and a careful design, allow the ADS8325 to convert at up to a 100 kHz rate while requiring very little power. However, for the absolute lowest power dissipation, there are several things to keep in mind.
The power dissipation of the ADS8325 scales directly with conversion rate. Therefore, the first step to achieving the lowest power dissipation is to find the lowest conversion rate that will satisfy the requirements of the system.
In addition, the ADS8325 is in power-down mode under two conditions: when the conversion is complete and whenever $\overline{\mathrm{CS}}$ is HIGH (see the Timing Information section). Ideally, each conversion should occur as quickly as possible, preferably at a 2.4 MHz clock rate. This way, the converter spends the longest possible time in the power-down mode. This is very important as the converter not only uses power on each DCLOCK transition (as is typical for digital CMOS components), but also uses some current for the analog circuitry, such as the comparator. The analog section dissipates power continuously until the power-down mode is entered.
See Figure 37 and Figure 38 for the current consumption of the ADS8325 versus sample rate. For these graphs, the converter is clocked at 2.4 MHz regardless of the sample rate. $\overline{\mathrm{CS}}$ is held HIGH during the remaining sample period.

There is an important distinction between the power-down mode that is entered after a conversion is complete and the full power-down mode that is enabled when $\overline{\mathrm{CS}}$ is HIGH. $\overline{\mathrm{CS}}$ LOW will shut down only the analog section. The digital section is completely shut down only when $\overline{\mathrm{CS}}$ is HIGH. Thus, if $\overline{C S}$ is left LOW at the end of a conversion, and the converter is continually clocked, the power consumption will not be as low as when $\overline{\mathrm{CS}}$ is HIGH.

SHORT CYCLING

Another way to save power is to utilize the $\overline{\mathrm{CS}}$ signal to short cycle the conversion. Due to the ADS8325 placing the latest data bit on the $\mathrm{D}_{\text {out }}$ line as it is generated, the converter can easily be short cycled. This term means that the conversion can be terminated at any time. For example, if only 14 bits of the conversion result are needed, then the conversion can be terminated (by pulling $\overline{\mathrm{CS}}$ HIGH) after the 14th bit has been clocked out.

Figure 37. Power-Supply and Reference Current vs Sample Rate at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

Figure 38. Power-Supply and Reference Current vs Sample Rate at $V_{D D}=2.7 \mathrm{~V}$

This technique can be used to lower the power dissipation (or to increase the conversion rate) in those applications where an analog signal is being monitored until some condition becomes true. For example, if the signal is outside a predetermined range, the full 16 -bit conversion result may not be needed. If so, the conversion can be terminated after the first n bits, where n might be as low as 3 or 4 . This results in lower power dissipation in both the converter and the rest of the system as they spend more time in power-down mode.

	Texas INSTRUMENTS www.ti.com
-MA	

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8325 circuitry. This will be particularly true if the reference voltage is low and/or the conversion rate is high. At a 100 kHz conversion rate, the ADS8325 makes a bit decision every 416ns. That is, for each subsequent bit decision, the digital output must be updated with the results of the last bit decision, the capacitor array appropriately switched and charged, and the input to the comparator settled to a 16-bit level all within one clock cycle. 6

The basic SAR architecture is sensitive to spikes on the power supply, reference, and ground connections that occur just prior to latching the comparator output. Thus, during any single conversion for an n-bit SAR converter, there are n windows in which large external transient voltages can easily affect the conversion result. Such spikes might originate from switching power supplies, digital logic, and high-power devices, to name a few. This particular source of error can be very difficult to track down if the glitch is almost synchronous to the converter's DCLOCK signal as the phase difference between the two changes with time and temperature, causing sporadic misoperation.

With this in mind, power to the ADS8325 should be clean and well-bypassed. A $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor should be placed as close as possible to the ADS8325 package. In addition, a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a 5Ω or 10Ω series resistor may be used to low-pass filter a noisy supply.
The reference should be similarly bypassed with a $47 \mu \mathrm{~F}$ capacitor. Again, a series resistor and large capacitor can be used to low-pass filter the reference voltage. If the reference voltage originates from an op amp, make sure that the op amp can drive the bypass capacitor without oscillation (the series
resistor can help in this case). Keep in mind that while the ADS8325 draws very little current from the reference on average, there are still instantaneous current demands placed on the external input and reference circuitry.

Texas Instruments' OPA627 op amp provides optimum performance for buffering both the signal and reference inputs. For low-cost, low-voltage, single-supply applications, the OPA2350 or OPA2340 dual op amps are recommended.

Also, keep in mind that the ADS8325 offers no inherent rejection of noise or voltage variation in regards to the reference input. This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results. While high-frequency noise can be filtered out as described in the previous paragraph, voltage variation due to the line frequency $(50 \mathrm{~Hz}$ or 60 Hz$)$ can be difficult to remove.

The GND pin on the ADS8325 should be placed on a clean ground point. In many cases, this will be the analog ground. Avoid connecting the GND pin too close to the grounding point for a microprocessor, microcontroller, or digital signal processor. If needed, run a ground trace directly from the converter to the power-supply connection point. The ideal layout will include an analog ground plane for the converter and associated analog circuitry.

Texas
INSTRUMENTS
www.ti.com

APPLICATION CIRCUITS

Figure 39 shows a basic data acquisition system. The ADS8325 input range is connected to 2.5 V or 4.096 V . The 5Ω resistor and $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor filters the microcontroller noise on the supply, as well as any
high-frequency noise from the supply itself. The exact values should be picked such that the filter provides adequate rejection of noise. Operational amplifiers and voltage reference are connected to analog power supply, $A V_{D D}$.

Figure 39. Two Examples of a Basic Data Acquisition System

Revision History

Changes from Revision B (June 2007) to Revision C
 Page

- Changed note for DRB package. \qquad
- Changed second timing diagram from the top; moved Hi-Z to span the entire range of $\mathrm{t}_{\text {SMPL }}$.. 8

Changes from Revision A (June 2003) to Revision B Page

- Changed R_{ON} and $\mathrm{C}_{\text {(SAMPLE) }}$ values in Equivalent Input Circuit.. 3
- Added missing value from Digital Inputs, Input Current, B Grade (typo) ... 3
- Added missing values from Sampling Dynamics, B Grade (typo) .. 5
- Changed DRB package pinout drawing to include thermal pad outline (not to scale) .. 7
- Changed timing diagram (added new diagram to existing figures) .. 8
- Added Peak-to-Peak Noise For a DC Input vs Reference Voltage plot .. 11
- Changed input capcitance from 20pF to 40pF (regarding the source of the analog input voltage) 16
- Changed Figure 31 ... 17
- Changed Figure 33 capacitor from 47F to 47 FF (typo) .. 18
- Changed $V_{F S}$ from 7FFFH to FFFFH in Figure 36... 20
- Changed Figure 39 ... 23

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
ADS8325IBDGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDGKRG4	ACTIVE	MSOP	DGK	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDGKT	ACTIVE	MSOP	DGK	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDGKTG4	ACTIVE	MSOP	DGK	8	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDRBR	ACTIVE	SON	DRB	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDRBRG4	ACTIVE	SON	DRB	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDRBT	ACTIVE	SON	DRB	8	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IBDRBTG4	ACTIVE	SON	DRB	8	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDGKR	ACTIVE	MSOP	DGK	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDGKT	ACTIVE	MSOP	DGK	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDGKTG4	ACTIVE	MSOP	DGK	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDRBR	ACTIVE	SON	DRB	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDRBRG4	ACTIVE	SON	DRB	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDRBT	ACTIVE	SON	DRB	8	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
ADS8325IDRBTG4	ACTIVE	SON	DRB	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^1]${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Carrier tape design is defined largely by the component lentgh, width, and thickness.

Ao $=$ Dimension designed to accommodate the component width.
Bo $=$ Dimension designed to accommodate the component length.
$K o=$ Dimension designed to accommodate the component thickness.
$\mathrm{W}=$ Overall width of the carrier tape.
$\mathrm{P}=$ Pitch between successive cavity centers.

TAPE AND REEL INFORMATION

Device	Package	Pins	Site	Reel Diameter $(\mathbf{m m})$	Reel Width $(\mathbf{m m})$	$\mathbf{A 0}(\mathbf{m m})$	$\mathbf{B 0}(\mathbf{m m})$	K0 (mm)	$\mathbf{P 1}$ $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
ADS8325IBDGKR	DGK	8	MLA	330	12	5.2	3.3	1.6	12	12	NONE
ADS8325IBDGKT	DGK	8	MLA	330	12	5.2	3.3	1.6	12	12	NONE
ADS8325IBDRBR	DRB	8	TUA	330	12	3.3	3.3	1.1	8	12	Q2
ADS8325IBDRBT	DRB	8	TUA	330	12	3.3	3.3	1.1	8	12	Q2
ADS8325IDGKR	DGK	8	MLA	330	12	5.2	3.3	1.6	12	12	NONE
ADS8325IDGKT	DGK	8	MLA	330	12	5.2	3.3	1.6	12	12	NONE
ADS8325IDRBR	DRB	8	TUA	330	12	3.3	3.3	1.1	8	12	Q2
ADS8325IDRBT	DRB	8	TUA	330	12	3.3	3.3	1.1	8	12	Q2

TAPE AND REEL BOX INFORMATION

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
ADS8325IBDGKR	DGK	8	MLA	390.0	348.0	63.0
ADS8325IBDGKT	DGK	8	MLA	390.0	348.0	63.0
ADS8325IBDRBR	DRB	8	TUA	0.0	0.0	0.0
ADS8325IBDRBT	DRB	8	TUA	0.0	0.0	0.0
ADS8325IDGKR	DGK	8	MLA	390.0	348.0	63.0
ADS8325IDGKT	DGK	8	MLA	390.0	348.0	63.0
ADS8325IDRBR	DRB	8	TUA	0.0	0.0	0.0
ADS8325IDRBT	DRB	8	TUA	0.0	0.0	0.0

PACKAGE MATERIALS INFORMATION

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

4203482/G 11/04
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Small Outline No-Lead (SON) package configuration.
(he package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
Metalized features are supplier options and may not be on the package.

INSTRUMENTS
www.ti.com

THERMAL PAD MECHANICAL DATA DRB (S-PDSO-N8)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DRB (S-PDSO-N8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

W1

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
ADS8325IBDGKR	MSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
ADS8325IBDGKT	MSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
ADS8325IBDRBR	SON	DRB	8	2500	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ADS8325IBDRBT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ADS8325IDGKR	MSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
ADS8325IDGKT	MSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
ADS8325IDRBR	SON	DRB	8	2500	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ADS8325IDRBT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS8325IBDGKR	MSOP	DGK	8	2500	346.0	346.0	29.0
ADS8325IBDGKT	MSOP	DGK	8	250	210.0	185.0	35.0
ADS8325IBDRBR	SON	DRB	8	2500	346.0	346.0	29.0
ADS8325IBDRBT	SON	DRB	8	250	210.0	185.0	35.0
ADS8325IDGKR	MSOP	DGK	8	2500	346.0	346.0	29.0
ADS8325IDGKT	MSOP	DGK	8	250	210.0	185.0	35.0
ADS8325IDRBR	SON	DRB	8	2500	346.0	346.0	29.0
ADS8325IDRBT	SON	DRB	8	250	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI . Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI E2E Commu	y Home Page	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
 SPI is a trademark of Motorola, Inc.
 All other trademarks are the property of their respective owners.

[^1]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
 Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
 Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
 Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

