MD8001 (SILICON) MD8002

MD8003

MULTIPLE SILICON ANNULAR TRANSISTORS

... designed for use as differential amplifiers, dual general-purpose amplifiers, front-end detectors and temperature compensation applications.

- Excellent Audio Amplifier Direct Coupled Input Devices.
- Collector-Emitter Breakdown Voltage —

BVCEO = 40 Vdc (Min) - MD8001 50 Vdc (Min) - MD8002

60 Vdc (Min) - MD8003

NPN SILICON MULTIPLE TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
MD8002 50		40 50 60		
Collector Current — Continuous	I _C	30		mAdc
		One Die	Both Die Equal Power	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	575 3.29	625 3.57	mW mW/°C
Total Power Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.8 10.3	2.5 14.3	Watts mW/ ^O C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-65 to +200		°c

THERMAL CHARACTERISTICS

Characteristic	Symbol	One Die Max	Both Die Equal Power Max	Unit
Thermal Resistance, Junction to Ambient	R ₀ JA(1)	304	280	°C/W
Thermal Resistance, Junction to Case	R _θ JC	97	70	°C/W
		Junction to Ambient	Junction to Case	
Coupling Factor		84	44	%

^{·(1)} R_{0.1A} is measured with the device soldered into a typical printed circuit board.

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs. The junction temperature can be calculated as follows:

(1)
$$\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2}$$

Where $^{\Delta}T_{J1}$ is the change in junction temperature of die 1 R $_{\theta1}$ and R $_{\theta2}$ is the thermal resistance of die 1 and die 2 PD1 and PD2 is the power dissipated in die 1 and die 2 k $_{\theta2}$ is the thermal coupling between die 1 and die 2

An effective package thermal resistance can be defined as follows:

(2)
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

where: PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\Delta T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2} P_{D2})$$

For the conditions where $P_{D1} = P_{D2}$, $P_{DT} = 2P_{D}$, equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2})/2$$

Values for the coupling factors when either the case or the ambient is used as a reference are given in the table on page 1

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (1)	BVCEO				Vdc
(IC = 10 mAdc, IB = 0)	MD8001	020	40		-	
ů ů	MD8002		50	_		1
	MD8003		60			
Collector Cutoff Current		ГСВО				nAdc
(V _{CB} = 40 Vdc, I _E = 0)			_	-	50	ļ
Emitter Cutoff Current		¹ EBO				nAdc
$(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$			_	-	50	
ON CHARACTERISTICS						
DC Current Gain		hFE				
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$			100	200		
DYNAMIC CHARACTERISTICS						
Current-Gain-Bandwidth Product (1)		fT		I		MHz
(I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 10	0 MHz)		_	260	-	
Output Capacitance		Cob				p⊩
(V _{CB} = 10 Vdc, E = 0, f = 100 kHz)				2.6	_	
Input Capacitance		Cib	T			pF
$(V_{BE} = 2.0 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kHz})$			_	2.3	_	1
MATCHING CHARACTERISTICS						
Base Voltage Differential		VBE1-VBE2				mVdc
(I _C = 1.0 mAdc, V _{CE} = 10 Vdc)		1	_	_	15	1

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.